The exploration of naturally occurring antimicrobials for food preservation receives increasing attention due to consumer awareness of natural food products and a growing concern of microbial resistance towards conventional preservatives. The use of essential oils, as an alternative to the use of synthetic chemicals, to preserve quality of fresh and minimally processed fruits and vegetables has been investigated in several works through in vitro and in vivo experiments. Some oils presented antimicrobial and antioxidant activities that indicate clearly their potential to become technologically useful products as sanitizing agents. This chapter describes the use of essential oils from different sources and their control of postharvest microbial decay and overall quality preservation of fresh produce. Also, it includes a discussion about the use of essential oils as potential inhibitors of quorum-sensing mechanism to control bacterial spoilage and pathogenesis in food-related microorganisms.


Biopreservatives Green technologies Fresh produce Antimicrobials 


  1. Adonizio, A. L., Downum, K., Bennett, B. C., & Mathee, K. (2006). Anti-quorum sensing activity of medicinal plants in southern Florida. Journal of Ethnopharmacology, 105(3), 427–435.CrossRefGoogle Scholar
  2. Al-Hussaini, R., & Mahasneh, A. M. (2009). Microbial growth and quorum sensing antagonist activities of herbal plants extracts. Molecules, 14, 3425–3435.CrossRefGoogle Scholar
  3. Alvarez, M. V., Moreira, M. R., & Ponce, A. (2012). Antiquorum sensing and antimicrobial activity of natural agents with potential use in food. Journal of Food Safety, 32(3), 379–387.CrossRefGoogle Scholar
  4. Alvarez, M. V., Ortega-Ramirez, L. A., Gutierrez-Pacheco, M. M., Bernal-Mercado, A. T., Rodriguez-Garcia, I., Gonzalez-Aguilar, G. A., et al. (2014). Oregano essential oil-pectin edible films as anti-quorum sensing and food antimicrobial agents. Frontiers in Microbiology, 5, 699.CrossRefGoogle Scholar
  5. Alvarez, M. V., Ponce, A. G., & Moreira, M. R. (2013). Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT-Food Science and Technology, 20, 78–87.CrossRefGoogle Scholar
  6. Ayala-Zavala, J. F., Del Toro-Sánchez, L., Alvarez-Parrilla, E., & González-Aguilar, G. A. (2008a). High relative humidity in-package of fresh-cut fruits and vegetables: Advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? Journal of Food Science, 73, 41–47.CrossRefGoogle Scholar
  7. Ayala-Zavala, J. F., Oms-Oliu, G., Odriozola-Serrano, I., González-Aguilar, G. A., Álvarez-Parrilla, E., & Martín-Belloso, O. (2008b). Bio-preservation of fresh-cut tomatoes using natural antimicrobials. European Food Research and Technology, 226, 1047–1055.CrossRefGoogle Scholar
  8. Ayala-Zavala, J. F., Silva-Espinoza, B. A., Cruz-Valenzuela, M. R., Leyva, J. M., Ortega-Ramírez, L. A., Carrazco-Lugo, D. K., et al. (2013). Pectin-cinnamon leaf oil coatings add antioxidant and antibacterial properties to fresh-cut peach. Flavour and Fragrance Journal, 28, 39–45.CrossRefGoogle Scholar
  9. Ayala-Zavala, J. F., Soto-Valdez, H., González-León, A., Álvarez-Parrilla, E., Martín-Belloso, O., & González-Aguilar, G. A. (2008c). Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 60, 359–368.CrossRefGoogle Scholar
  10. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils—A review. Food and Chemical Toxicology, 46(2), 446–475.CrossRefGoogle Scholar
  11. Bowles, E. J. (2003). Chemistry of aromatherapeutic oils. Australia: Allen and Unwin. ISBN 174114051X.Google Scholar
  12. Brackman, G., Hillaert, U., Van Calenbergh, S., Nelis, H. J., & Coenye, T. (2009). Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Research in Microbiology, 160, 144–151.CrossRefGoogle Scholar
  13. Brahma, N. S., Singh, B. R., Singh, R. L., Prakash, D., Sarma, B. K., & Singh, H. B. (2009). Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food and Chemical Toxicology, 47, 778–786.CrossRefGoogle Scholar
  14. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94, 223–253.CrossRefGoogle Scholar
  15. Chang, H. T., Cheng, Y. H., Wu, C. L., Chang, S. T., Chang, T. T., & Su, Y. C. (2008). Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana florin leaf against plant pathogenic fungi. Bioresource Technology, 99, 6266–6270.CrossRefGoogle Scholar
  16. Dadalioglu, I., & Evrendilek, G. A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. Journal of Agricultural and Food Chemistry, 52(26), 8255–8260.CrossRefGoogle Scholar
  17. Davidson, P. M., Critzer, F. J., & Taylor, T. M. (2013). Naturally occurring antimicrobials for minimally processed foods. Annual Review of Food Science and Technology, 4, 163–190.CrossRefGoogle Scholar
  18. Draughon, F. A. (2004). Use of botanicals as biopreservatives in foods. Food Technology, 58(2), 20–29.Google Scholar
  19. Elgayyar, M., Draughon, F. A., Golden, D. A., & Mount, J. R. (2001). Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection, 64(7), 1019–1024.Google Scholar
  20. Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends in Food Science and Technology, 19(3), 156–164.CrossRefGoogle Scholar
  21. Friedman, M., Henika, P. R., & Mandrell, R. E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection, 65(10), 1545–1560.Google Scholar
  22. Gao, M., Teplitski, M., Robinson, J. B., & Bauer, W. D. (2003). Production of substances by Medicago truncatula that affect bacterial quorum sensing. Molecular Plant-Microbe Interactions, 16, 827–834.CrossRefGoogle Scholar
  23. Gill, A. O., Delaquis, P., Russo, P., & Holley, R. A. (2002). Evaluation of antilisterial action of cilantro oil on vacuum packed ham. International Journal of Food Microbiology, 73(1), 83–92.CrossRefGoogle Scholar
  24. Goñi, M. G., Tomadoni, B., Moreira, M. R., & Roura, S. I. (2013). Application of tea tree and clove essential oil on late development stages of Butterhead lettuce: Impact on microbiological quality. LWT-Food Science and Technology, 54(1), 107–113.CrossRefGoogle Scholar
  25. González-Aguilar, G. A., Ansorena, M. R., Viacava, G. E., Roura, S. I., & Ayala-Zavala, J. F. (2013). Plant essential oils as antifungal treatments on the postharvest of fruit and vegetables. In M. Razzaghi-Abyaneh & M. Rai (Eds.), Antifungal metabolites from plants (pp. 429–446). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  26. González-Aguilar, G. A., Ayala-Zavala, J. F., Olivas, G. I., de la Rosa, L. A., & Álvarez-Parrilla, E. (2010). Preserving quality of fresh-cut products using safe technologies. Journal für Verbraucherschutz und Lebensmittelsicherheit, 5(1), 65–72.CrossRefGoogle Scholar
  27. Gram, L., Ravn, L., Rasch, M., Bruhn, J., Christensen, A., & Givskov, M. (2002). Food spoilage interactions between food spoilage bacteria. International Journal of Food Microbiology, 78, 79–97.CrossRefGoogle Scholar
  28. Gutierrez, J., Barry-Ryan, C., & Bourke, P. (2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology, 124, 91–97.CrossRefGoogle Scholar
  29. Gutierrez, J., Bourke, P., Lonchamp, J., & Barry-Ryan, C. (2009). Impact of plant essential oils on microbiological, organoleptic and quality markers of minimally processed vegetables. Innovative Food Science and Emerging Technologies, 10(2), 195–202.CrossRefGoogle Scholar
  30. Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985–990.CrossRefGoogle Scholar
  31. Hullati, K. K., & Rai, V. R. (2004). Antimicrobial activity of Memecylon malabaricum. Fitoterapia, 75, 409–411.CrossRefGoogle Scholar
  32. Jamuna Bai, A., & Rai, V. R. (2011). Bacterial quorum sensing and food industry. Comprehensive Reviews in Food Science and Food Safety, 10(3), 183–193.CrossRefGoogle Scholar
  33. Jamuna Bai, A., Rai, V. R., & Pradeepa, V. S. (2011). Evaluation of the antimicrobial activity of three medicinal plants of South India. Malaysian Journal of Microbiology, 7, 14–18.Google Scholar
  34. Liao, C. H. (1989). Analysis of pectate lyases produced by soft rot bacteria associated with spoilage of vegetables. Applied and Environmental Microbiology, 55, 1677–1683.Google Scholar
  35. Min, S., & Krochta, J. M. (2005). Inhibition of Penicillium commune by edible whey protein films incorporating lactoferrin, lacto-ferrin hydrolysate, and lactoperoxidase systems. Journal of Food Science, 70, 87–94.CrossRefGoogle Scholar
  36. Moreira, M. R., Ponce, A. G., del Valle, C. E., & Roura, S. I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT-Food Science and Technology, 38, 565–570.CrossRefGoogle Scholar
  37. Moreira, M. R., Ponce, A. G., Del Valle, C. E., & Roura, S. I. (2007). Effects of clove and tea tree oils on Escherichia coli O157:H7 in blanched spinach and minced cooked beef. Journal Of Food Processing and Preservation, 31(4), 379–391.CrossRefGoogle Scholar
  38. Pandit, V. A., & Shelef, L. A. (1994). Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiology, 11(1), 57–63.CrossRefGoogle Scholar
  39. Pellegrini, M. C., Alvarez, M. V., Ponce, A. G., Cugnata, N. M., De Piano, F. G., & Fuselli, S. R. (2014). Anti-quorum sensing and antimicrobial activity of aromatic species from South America. Journal of Essential Oil Research, 26(6), 458–465.CrossRefGoogle Scholar
  40. Pichersky, E., Noel, J. P., & Dudareva, N. (2006). Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science, 311(5762), 808–811.CrossRefGoogle Scholar
  41. Ponce, A. G., Del Valle, C. E., & Roura, S. I. (2004a). Shelf life of leafy vegetables treated with natural essential oils. Journal of Food Science, 69(2), fms50–fms56.Google Scholar
  42. Ponce, A. G., Del Valle, C. E., & Roura, S. I. (2004b). Natural essential oils as reducing agents of peroxidase activity in leafy vegetables. LWT-Food Science and Technology, 37, 199–204.CrossRefGoogle Scholar
  43. Ponce, A. G., Roura, S. I., & Moreira, M. D. R. (2011). Essential oils as biopreservatives: Different methods for the technological application in lettuce leaves. Journal of Food Science, 76(1), M34–M40.CrossRefGoogle Scholar
  44. Pranoto, Y., Rakshit, S. K., & Salokhe, V. M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Science and Technology, 38, 859–865.CrossRefGoogle Scholar
  45. Rasch, M., Andersen, J., Nielsen, K., Flodgaard, L., Christensen, H., Givskov, M., et al. (2005). Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Applied and Environmental Microbiology, 71, 3321–3330.CrossRefGoogle Scholar
  46. Rasmussen, T. B., & Givskov, M. (2006). Quorum-sensing inhibitors as anti-pathogenic drugs. International Journal of Medical Microbiology, 296(2), 149–161.CrossRefGoogle Scholar
  47. Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. Trends in Food Science and Technology, 20, 438–447.CrossRefGoogle Scholar
  48. Selim, S. (2011). Antimicrobial activity of essential oils against Vancomycin-Resistant enterococci (VRE) and Escherichia coli O157:H7 in feta soft cheese and minced beef meat. Brazilian Journal of Microbiology, 42(1), 187–196.CrossRefGoogle Scholar
  49. Smith, J. L., Fratamico, P. M., & Novak, J. S. (2004). Quorum sensing: A primer for food microbiologists. Journal of Food Protection, 67, 1053–1070.Google Scholar
  50. Speranza, B., & Corbo, M. R. (2010). Essential oils for preserving perishable foods: Possibilities and limitations. In A. Bevilacqua, M. R. Corbo, & M. Sinigaglia (Eds.), Application of alternative food-preservation technologies to enhance food safety & stability (pp. 35–57). China: Bentham Science Publishers.Google Scholar
  51. Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32, 235–245.CrossRefGoogle Scholar
  52. Troncoso-Rojas, R., & Tiznado-Hernández, M. E. (2007). Natural compounds to control fungal postharvest diseases. In R. Troncoso-Rojas, M. E. Tiznado-Hernández, & A. González-León (Eds.), Recent advances in alternative postharvest technologies to control fungal diseases in fruits and vegetables (pp. 127–156). Trivandrum, Kerala: Research Signpost.Google Scholar
  53. Truchado, P., López-Gálvez, F., Gil, M., Tomás-Barberán, F., & Allende, A. (2009). Quorum sensing inhibitory and antimicrobial activities of honeys and the relationship with individual phenolics. Food Chemistry, 115(4), 1337–1344.CrossRefGoogle Scholar
  54. Vattem, D. A., Mihalik, K., Crixell, S. H., & McLean, R. J. C. (2007). Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia, 78, 302–310.CrossRefGoogle Scholar
  55. Vikram, A., Jesudhasan, P. R., Jayaprakasha, G. K., Pillai, B. S., & Patil, B. S. (2010). Grapefruit bioactive limonoids modulate E. coli O157:H7 TTSS and biofilm. International Journal of Food Microbiology, 140, 109–116.CrossRefGoogle Scholar
  56. Wang, C. Y., Wang, S. Y., & Chen, C. (2008). Increasing antioxidant activity and reducing decay of blueberries by essential oils. Journal of Agricultural and Food Chemistry, 56, 3587–3592.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. R. Moreira
    • 1
    • 2
  • M. V. Alvarez
    • 1
    • 2
  • A. G. Ponce
    • 1
    • 2
    Email author
  1. 1.Grupo de Investigación en Ingeniería en AlimentosUniversidad Nacional de Mar del PlataBuenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations