Advertisement

Efficient Variational Design Sensitivity Analysis

  • Franz-Joseph BartholdEmail author
  • Nikolai Gerzen
  • Wojciech Kijanski
  • Daniel Materna
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 40)

Abstract

The authors’ variant of variational design sensitivity analysis in structural optimisation is highlighted in detail. A rigorous separation of physical quantities into geometry and displacement mappings based on an intrinsic presentation of continuum mechanics build up the first step. The variations with respect to design and displacements are easily available in a second step. The subsequent discrete matrix expressions are used to formulate the finite element equations in a third step. The fourth step elaborates the derived Matlab implementation while the fifth step shows the computational behaviour for an academic example. Both, the general case of nonlinear structural behaviour and the linearised approximation are outlined. The advocated scheme is compared with the well-known analytical differentiation approach of the discrete finite element equations.

Keywords

Finite Element Approximation Design Sensitivity Analysis Finite Element Equation Reference Placement Design Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Arnout, M. Firl, K.U. Bletzinger, Parameter free shape and thickness optimisation considering stress response. Struct. Multi. Optim. 45(6), 801–814 (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    J. Arora, An exposition of the material derivative approach for structural shape sensitivity analysis. Comp. Methods Appl. Mech. Eng. 105, 41–62 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    N. Banichuk, Problems and Methods of Structural Optimal Design (Plenum Press, New York, 1983)CrossRefGoogle Scholar
  4. 4.
    F.J. Barthold, Zur Kontinuumsmechanik inverser Geometrieprobleme (Habilitation, TU Braunschweig, 2001)Google Scholar
  5. 5.
    F.J. Barthold, Remarks on variational shape sensitivity analysis based on local coordinates. Eng. Anal. Bound. Elem. 32(11), 971–985 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    F.J. Barthold, E. Stein, A continuum mechanical based formulation of the variational sensitivity analysis in structural optimization. Part I: analysis. Struct. Multi. Optim. 11, 29–42 (1996)CrossRefGoogle Scholar
  7. 7.
    F.J. Barthold, K. Wiechmann, Variational design sensitivity for inelastic deformations,in Proceedings of COMPLAS 5, ed. by D. Owen, E. Onate, E. Hinton (CIMNE, Barcelona, 1997), pp. 792–797Google Scholar
  8. 8.
    K.J. Bathe, Finite Element Procedures (Prentice-Hall, 1996)Google Scholar
  9. 9.
    K.U. Bletzinger, M. Firl, J. Linhard, R. Wüchner, Optimal shapes of mechanically motivated surfaces. Comput. Methods Appl. Mech. Eng. 199(5–8), 324–333 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    J. Bonet, R. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis (Cambridge University Press, Cambridge, 1997)Google Scholar
  11. 11.
    R. Brockman, Geometric sensitivity analysis with isoparametric finite elements. Commun. Appl. Numer. Methods 3, 495–499 (1987)CrossRefzbMATHGoogle Scholar
  12. 12.
    K. Choi, N.H. Kim, Structural Sensitivity Analysis and Optimization, Mechanical Engineering Series (Springer, Berlin, 2005)Google Scholar
  13. 13.
    K. Dems, Z. Mróz, Variational approach to first- and second-order sensitivity analysis of elastic structures. Int. J. Numer. Methods Eng. 21, 637–661 (1985)CrossRefzbMATHGoogle Scholar
  14. 14.
    J.D. Eshelby, The force on an elastic singularity. Philos. Trans. R. Soc. Lond. 244, 87–112 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    N. Gerzen, D. Materna, F.J. Barthold, The inner structure of sensitivities in nodal based shape optimisation. Comput. Mech. 49, 379–396 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Gurtin, Configurational Forces as Basic Concepts of Continuum Physics (Springer, New York, 2000)Google Scholar
  17. 17.
    R. Haber, A new variational approach to structural shape design sensitivity analysis, in Computer Aided Optimal Design, vol. 27, ed. by C. Mota Soares (Springer, New York, 1987), pp. 573–587Google Scholar
  18. 18.
    J. Haslinger, R.A.E. Mäkinen, Introduction to Shape Optimization (Society for Industrial and Applied Mathematics, Philadelphia, 2003)Google Scholar
  19. 19.
    E. Haug, K. Choi, V. Komkov, Design Sensitivity Analysis of Structural Systems (Academic Press, Orlando, 1986)zbMATHGoogle Scholar
  20. 20.
    R. Kienzler, G. Maugin (eds.), Configurational Mechanics of Materials (Springer, Wien, 2001)zbMATHGoogle Scholar
  21. 21.
    M. Kleiber, H. Antúnez, T. Hien, P. Kowalczyk, Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations (Wiley, Chichester, 1997)Google Scholar
  22. 22.
    C. Le, T. Bruns, D. Tortorelli, A gradient-based, parameter-free approach to shape optimization. Comput. Methods Appl. Mech. Eng. 200(9–12), 985–996 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    K. Lewin, Field Theory in Social Science: Selected Theoretical Papers by Kurt Lewin (Tavistock, London, 1952)Google Scholar
  24. 24.
    D. Materna, Structural and Sensitivity Analysis for the Primal and Dual Problems in the Physical and Material Spaces (Shaker Verlag, 2010)Google Scholar
  25. 25.
    D. Materna, F.J. Barthold, Variational design sensitivity analysis in the context of structural optimization and configurational mechanics. Int. J. Fract. 147(1–4), 133–155 (2007)CrossRefzbMATHGoogle Scholar
  26. 26.
    D. Materna, F.J. Barthold, Goal-oriented r-adaptivity based on variational arguments in the physical and material spaces. Comput. Methods Appl. Mech. Eng. 198(41–44), 3335–3351 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    D. Materna, F.J. Barthold, Theoretical aspects and applications of variational sensitivity analysis in the physical and material space, in Computational Optimization: New Research Developments, ed. by R.F. Linton, T.B. Carroll (Nova Science Publishers, 2010), pp. 397–444Google Scholar
  28. 28.
    P. Michaleris, D. Tortorelli, C. Vidal, Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. Int. J. Numer. Methods Eng. 37, 2471–2499 (1994)CrossRefzbMATHGoogle Scholar
  29. 29.
    Z. Mróz, Variational Approach to Sensitivity Analysis and Optimal Design (Plenum Press, New York, 1986)CrossRefGoogle Scholar
  30. 30.
    W. Noll, A new mathematical theory of simple materials. Arch. Ration. Mech. Anal. 102(1) (1972)Google Scholar
  31. 31.
    O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics (Springer, New York, 1984)CrossRefzbMATHGoogle Scholar
  32. 32.
    M. Scherer, R. Denzer, P. Steinmann, A fictitious energy approach for shape optimization. Int. J. Numer. Methods Eng. 82, 269–302 (2010)MathSciNetzbMATHGoogle Scholar
  33. 33.
    D. Tortorelli, Z. Wang, A systematic approach to shape sensitivity analysis. Int. J. Solids Struct. 30(9), 1181–1212 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    C. Truesdell, W. Noll, The nonlinear field theories of mechanics, in Handbuch der Physik III/3, ed. by S. Flügge (Springer, 1965)Google Scholar
  35. 35.
    P. Wriggers, Nonlinear Finite Element Methods (Springer, 2008)Google Scholar
  36. 36.
    O. Zienkiewicz, R. Taylor, R. Taylor, The Finite Element Method (Butterworth-Heinemann, 2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Franz-Joseph Barthold
    • 1
    Email author
  • Nikolai Gerzen
    • 1
  • Wojciech Kijanski
    • 1
  • Daniel Materna
    • 2
  1. 1.Numerische Methoden und InformationsverarbeitungTU DortmundDortmundGermany
  2. 2.Department of Civil EngineeringOstwestfalen-Lippe University of Applied SciencesDetmoldGermany

Personalised recommendations