International Conference on Scalable Uncertainty Management

SUM 2015: Scalable Uncertainty Management pp 385-398 | Cite as

Fuzzy XPath for the Automatic Search of Fuzzy Formulae Models

  • Jesús M. Almendros-Jiménez
  • Miquel Bofill
  • Alejandro Luna-Tedesqui
  • Ginés Moreno
  • Carlos Vázquez
  • Mateu Villaret
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9310)


In this paper we deal with propositional fuzzy formulae containing several propositional symbols linked with connectives defined in a lattice of truth degrees more complex than Bool. Instead of focusing on satisfiability (i.e., proving the existence of at least one model) as usually done in a SAT/SMT setting, our interest moves to the problem of finding the whole set of models (with a finite domain) for a given fuzzy formula. We reuse a previous method based on fuzzy logic programming where the formula is conceived as a goal whose derivation tree, provided by our FLOPER tool, contains on its leaves all the models of the original formula, together with other interpretations. Next, we use the ability of the FuzzyXPath tool (developed in our research group with FLOPER) for exploring these derivation trees once exported in XML format, in order to discover whether the formula is a tautology, satisfiable, or a contradiction, thus reinforcing the bi-lateral synergies between FuzzyXPath and FLOPER.


Fuzzy logic programming Automatic theorem proving Fuzzy XPath 


  1. 1.
    Almendros-Jiménez, J.M., Luna, A., Moreno, G.: A XPath debugger based on fuzzy chance degrees. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM-WS 2012. LNCS, vol. 7567, pp. 669–672. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  2. 2.
    Almendros-Jiménez, J.M., Luna, A., Moreno, G.: Fuzzy logic programming for implementing a flexible XPath-based query language. Electron. Notes Theor. Comput. Sci. 282, 3–18 (2012)CrossRefGoogle Scholar
  3. 3.
    Almendros-Jiménez, J.M., Luna Tedesqui, A., Moreno, G.: Annotating “fuzzy chance degrees” when debugging XPath queries. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013, Part II. LNCS, vol. 7903, pp. 300–311. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Almendros-Jiménez, J.M., Luna, A., Moreno, G.: Fuzzy XPath through fuzzy logic programming. New Gener. Comput. 33(2), 173–209 (2015)CrossRefGoogle Scholar
  5. 5.
    Almendros-Jiménez, J.M., Luna, A., Moreno, G., Vázquez, C.: Analyzing fuzzy logic computations with fuzzy XPath. In: Proceedings of XIII Spanish Conference on Programming and Languages, PROLE 2013, pp. 136–150 (extended version to appear in ECEASST). Complutense University of Madrid (2013)Google Scholar
  6. 6.
    Ansótegui, C., Bofill, M., Manyà, f., Villaret, M.: Building automated theorem provers for infinitely-valued logics with satisfiability modulo theory solvers. In: Proceedings of the 42nd IEEE International Symposium on Multiple-Valued Logic, ISMVL 2012, pp. 25–30 (2012)Google Scholar
  7. 7.
    Apt, K.R.: Introduction to logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Volume B: Formal Models and Semantics, pp. 493–574. Elsevier, MIT Press, Amsterdam, Cambridge (1990)Google Scholar
  8. 8.
    Arcelli, F., Formato, F.: A similarity-based resolution rule. Int. J. Intell. Syst. 17(9), 853–872 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Mareen, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009)Google Scholar
  10. 10.
    Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.F., Kay, M., Robie, J., Siméon, J.: XML path language (XPath) 2.0. In: W3C (2007)Google Scholar
  11. 11.
    Bofill, M., Moreno, G., Vázquez, C., Villaret, M.: Automatic proving of fuzzy formulae with fuzzy logic programming and SMT. In: Proceedings of XIII Spanish Conference on Programming and Languages, PROLE 2013, pp. 151–165 (extended version to appear in ECEASST). Complutense University of Madrid (2013)Google Scholar
  12. 12.
    Bratko, I.: Prolog Programming for Artificial Intelligence. Addison Wesley, Harlow (2000)Google Scholar
  13. 13.
    Gerla, G.: Fuzzy control as a fuzzy deduction system. Fuzzy Sets Syst. 121(3), 409–425 (2001)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. J. Logic Program. 12, 335–367 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lassez, J.L., Maher, M.J., Marriott, K.: Unification revisited. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 587–625. Morgan Kaufmann, Los Altos (1988)Google Scholar
  16. 16.
    Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1987)MATHCrossRefGoogle Scholar
  17. 17.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. (Elsevier) 146, 43–62 (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Moreno, G., Vázquez, C.: Fuzzy logic programming in action with FLOPER. J. Softw. Eng. Appl. 7, 273–298 (2014)CrossRefGoogle Scholar
  19. 19.
    Muñoz-Hernández, S., Pablos-Ceruelo, V., Strass, H.: Rfuzzy: syntax, semantics and implementation details of a simple and expressive fuzzy tool over prolog. Inf. Sci. 181(10), 1951–1970 (2011)CrossRefGoogle Scholar
  20. 20.
    Stickel, M.E.: A prolog technology theorem prover: implementation by an extended prolog compiler. J. Autom. Reasoning 4(4), 353–380 (1988)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Vidal, A., Bou, F., Godo, L.: An SMT-based solver for continuous t-norm based logics. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 633–640. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jesús M. Almendros-Jiménez
    • 1
  • Miquel Bofill
    • 2
  • Alejandro Luna-Tedesqui
    • 3
  • Ginés Moreno
    • 3
  • Carlos Vázquez
    • 3
  • Mateu Villaret
    • 2
  1. 1.Department of Languages and ComputationUniversity of AlmeríaAlmeríaSpain
  2. 2.Department of Computer Science, Applied Mathematics and StatisticsUniversity of GironaGironaSpain
  3. 3.Department of Computing SystemsUniversity of Castilla-La ManchaAlbaceteSpain

Personalised recommendations