Logics of Finite Hankel Rank

  • Nadia Labai
  • Johann A. Makowsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9300)


We discuss the Feferman-Vaught Theorem in the setting of abstract model theory for finite structures. We look at sum-like and product-like binary operations on finite structures and their Hankel matrices. We show the connection between Hankel matrices and the Feferman-Vaught Theorem. The largest logic known to satisfy a Feferman-Vaught Theorem for product-like operations is \(\mathrm {CFOL}\), first order logic with modular counting quantifiers. For sum-like operations it is \(\mathrm {CMSOL}\), the corresponding monadic second order logic. We discuss whether there are maximal logics satisfying Feferman-Vaught Theorems for finite structures.



We would like to thank T. Kotek for letting us use his example, and for valuable discussions.


  1. 1.
    Barwise, J., Feferman, S.: Model-Theoretic Logics. Perspectives in Mathematical Logic. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  2. 2.
    Barwise, K.J.: Axioms for abstract model theory. Ann. Math. Logic 7(2), 221–265 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blatter, C., Specker, E.: Le nombre de structures finies d’une th’eorie à charactère fin, pp. 41–44. Sciences Mathématiques, Fonds Nationale de la recherche Scientifique, Bruxelles (1981)Google Scholar
  4. 4.
    Carlyle, J.W., Paz, A.: Realizations by stochastic finite automata. J. Comput. Syst. Sci. 5, 26–40 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chandra, A., Lewis, H., Makowsky, J.A.: Embedded implicational dependencies and their implication problem. In: (1981) ACM Symposium on the Theory of Computing, pp. 342–354. ACM (1981)Google Scholar
  6. 6.
    Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational dependencies and their inference problem. In: XP1 Workshop on Database Theory (1980)Google Scholar
  7. 7.
    Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic, vol. 73, 3rd edn. Elsevier, Haarlem, North-Holland (1990)zbMATHGoogle Scholar
  8. 8.
    Compton, K.J.: Some useful preservation theorems. J. Symb. Log. 48(2), 427–440 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Durand, A., Jones, N.D., Makowsky, J.A., More, M.: Fifty years of the spectrum problem: survey and new results. Bull. Symb. Logic 18(04), 505–553 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical Logic. Undergraduate Texts in Mathematics, 2nd edn. Springer, Heidelberg (1994)CrossRefzbMATHGoogle Scholar
  12. 12.
    Feferman, S.: Persistent and invariant formulas for outer extensions. Compos. Math. 20, 29–52 (1968)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Feferman, S.: Two notes on abstract model theory, I: properties invariant on the range of definable relations between strcutures. Fundam. Math. 82, 153–165 (1974)zbMATHGoogle Scholar
  14. 14.
    Feferman, S., Kreisel, G.: Persistent and invariant formulas relative to theories of higher order. Bull. Am. Math. Soc. 72, 480–485 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Feferman, S., Vaught, R.: The first order properties of algebraic systems. Fundam. Math. 47, 57–103 (1959)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Feferman, S., Vaught, R.: The first order properties of products of algebraic systems. Fundam. Math. 47, 57–103 (1959)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fischer, E., Kotek, T., Makowsky, J.A.: Application of logic to combinatorial sequences and their recurrence relations. In: Grohe, M., Makowsky, J.A. (eds.) Model Theoretic Methods in Finite Combinatorics, Contemporary Mathematics, vol. 558, pp. 1–42. American Mathematical Society (2011)Google Scholar
  18. 18.
    Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphisms of graphs. J. AMS 20, 37–51 (2007)zbMATHGoogle Scholar
  19. 19.
    Gessel, I.: Combinatorial proofs of congruences. In: Jackson, D.M., Vanstone, S.A. (eds.) Enumeration and Design, pp. 157–197. Academic Press (1984)Google Scholar
  20. 20.
    Godlin, B., Kotek, T., Makowsky, J.A.: Evaluations of graph polynomials. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 183–194. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  21. 21.
    Grädel, E.: The expressive power of second order horn logic. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 466–477. Springer, Heidelberg (1991) Google Scholar
  22. 22.
    Gurevich, Y.: Modest theory of short chains I. J. Symb. Logic 44, 481–490 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gurevich, Y.: Logic and the challenge of computer science. In: Börger, E. (ed) Trends in Theoretical Computer Science, Principles of Computer Science Series, Chap. 1. Computer Science Press (1988)Google Scholar
  24. 24.
    Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16(4), 760–778 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kotek, T., Makowsky, J.A.: Connection matrices and the definability of graph parameters. Log. Methods Comput. Sci. 10(4) (2014)Google Scholar
  26. 26.
    Kreisel, G.: Choice of infinitary languages by means of definability criteria; generalized recursion theory. In: Barwise, J. (ed.) The Syntax and Semantics of Infinitary Languages. LNM, vol. 72, pp. 139–151. Springer, Heidelberg (1968)CrossRefGoogle Scholar
  27. 27.
    Labai, N., Makowsky, J.A.: The Feferman-Vaught theorem and finite Hankel rank. In preparation (2015)Google Scholar
  28. 28.
    Labai, N., Makowsky, J.: Tropical graph parameters. In: DMTCS Proceedings of 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC), vol. 1, pp. 357–368 (2014)Google Scholar
  29. 29.
    Läuchli, H.: A decision procedure for the weak second order theory of linear order. In: Logic Colloquium 1966, pp. 189–197, North Holland (1968)Google Scholar
  30. 30.
    Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32, 186–195 (1966)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Lindström, P.: On extensions of elementary logic. Theoria 35, 1–11 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lovász, L.: Connection matrics. In: Grimmet, G., McDiarmid, C. (eds.) Combinatorics, Complexity and Chance, A Tribute to Dominic Welsh, pp. 179–190. Oxford University Press (2007)Google Scholar
  33. 33.
    Lovász, L.: Large Networks and Graph Limits, vol. 60. Colloquium Publications, AMS, Providence (2012)zbMATHGoogle Scholar
  34. 34.
    Mahr, B., Makowsky, J.A.: Characterizing specification languages which admit initial semantics. Theor. Comput. Sci. 31, 49–60 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Makowsky, J.A.: \(\Delta \)-logics and generalized quantifiers. Ph.D. thesis, Department of Mathematics, ETH-Zurich, Switzerland (1974)Google Scholar
  36. 36.
    Makowsky, J.A.: Why horn formulas matter for computer science: initial structures and generic examples. J. Comput. Syst. Sci. 34(2/3), 266–292 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Makowsky, J.A.: Model theoretic issues in theoretical computer science, part I: relational databases and abstract data types. In: Lolli, G. et al. (eds.) Logic Colloquium 1982, Studies in Logic, pp. 303–343, North Holland (1984)Google Scholar
  38. 38.
    Makowsky, J.A.: Compactness, embeddings and definability. In: Barwise, J., Feferman, S. (eds.) Model-Theoretic Logics, Perspectives in Mathematical Logic, Chap. 18. Springer, Heidelberg (1985)Google Scholar
  39. 39.
    Makowsky, J.A.: Invariant definability. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) KGC 1997. LNCS, vol. 1289, pp. 186–202. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  40. 40.
    Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl. Logic 126(1–3), 159–213 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Makowsky, J.A., Pnueli, Y.: Logics capturing oracle complexity classes uniformly. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  42. 42.
    Makowsky, J.A., Pnueli, Y.B.: Oracles and quantifiers. In: Meinke, K., Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  43. 43.
    Makowsky, J.A., Vardi, M.: On the expressive power of data dependencies. Acta Inform. 23(3), 231–244 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Ravve, E.: Model checking for various notions of products. Master’s thesis, Thesis, Department of Computer Science, Technion-Israel Institute of Technology (1995)Google Scholar
  45. 45.
    Shelah, S.: The monadic theory of order. Ann. Math. 102, 379–419 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Specker, E.: Application of logic and combinatorics to enumeration problems. In: Börger, E. (ed.) Trends in Theoretical Computer Science, pp. 141–169. Computer Science Press (1988). (Reprinted In: Specker, E., Selecta, B., pp. 324–350 (1990))Google Scholar
  47. 47.
    Vardi, M.: The complexity of relational query languages. In: STOC 1982, pp. 137–146. ACM (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of InformaticsVienna University of TechnologyViennaAustria

Personalised recommendations