Advertisement

International Conference on Web-Age Information Management

WAIM 2015: Web-Age Information Management pp 65-76 | Cite as

Information Diffusion in Online Social Networks: Models, Methods and Applications

  • Changjun Hu
  • Wenwen XuEmail author
  • Peng Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9391)

Abstract

Online social networks are now recognized as an important platform for the spread of information, based on their convenient usage and strong interaction. The research on information diffusion in online social networks is valuable in both theoretical and practical perspective. In this paper, we present a survey of representative methods dealing with information diffusion. First, we analyze the main factors related to diffusion. Second, we propose a taxonomy that summarizes the state-of-the-art based on the type of insight provided to the analyst. We discuss various existing methods that fall in these broad categories and analyze their strengths and weaknesses. Finally, to facilitate future work, a discussion of incorporating dynamic properties of networks, diffusing in heterogeneous networks, and a life-cycle model of information diffusion is provided.

Keywords

Online social networks Information diffusion models Network structure Social crowds 

Notes

Acknowledgement

This work was supported by the National 973 Project (No. 2013CB329605).

References

  1. 1.
    Taxidou, I., Fischer P M.: Online analysis of information diffusion in twitter. In: Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion, pp. 1313–1318 (2014)Google Scholar
  2. 2.
    Bakshy, E., Rosenn, I., Marlow C, et al.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, pp. 519–528. ACM (2012)Google Scholar
  3. 3.
    Bakshy, E., Hofman, J M., Mason, WA., et al.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data mining, pp. 65–74. ACM (2011)Google Scholar
  4. 4.
    Fang B, Jia Y, Han Y, et al.: A survey of social network and information dissemination analysis. Chinese Science Bulletin, 1–10 (2014)Google Scholar
  5. 5.
    Guille, A., Hacid, H., Favre, C., et al.: Information diffusion in online social networks: a survey. ACM SIGMOD Rec. 42(2), 17–28 (2013)CrossRefGoogle Scholar
  6. 6.
    Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. Proc. R. So. Lon. 115(772), 700–721 (1927)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. Ser. A 138(834), 55–83 (1932)CrossRefGoogle Scholar
  8. 8.
    Rogers, E.: Diffusion of Innovations, 4th edn. Free Press, Tampa (1995)Google Scholar
  9. 9.
    Lazarsfeld, P.F., Berelson, B., Gaudet, H.: The People’s Choice: How the Voter Makes up his Mind in a Presidential Campaign. Columbia University Press, New York (1965)Google Scholar
  10. 10.
    Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78(6), 1 (1973)CrossRefGoogle Scholar
  11. 11.
    Parthasarathy, S., Ruan, Y., Satuluri, V.: Community Discovery in Social Networks: Applications, Methods and Merging Trends social Network Data Analytics, pp. 79–113. Springer, US (2011)Google Scholar
  12. 12.
    Zinoviev, D.: Social Networking and Community Behavior Modeling: Qualitative and Quantitative Measures. Information Diffusion in Social Networks, 146 (2012)Google Scholar
  13. 13.
    Ten, K.S., Haverkamp, S., Mahmood, F., et al.: Social network influences on technology acceptance: a matter of tie strength, centrality and density. In: BLED 2010 Proceedings Paper, vol. 40 (2010)Google Scholar
  14. 14.
    Zhao, J., Wu, J., Feng, X., et al.: Information propagation in online social networks: a tie-strength perspective. Knowl. Inf. Sys. 32(3), 589–608 (2012)CrossRefGoogle Scholar
  15. 15.
    Naaman, M., Boase, J., Lai, C.H.: Is it really about me?: message content in social awareness streams. In: Proceedings of the 2010 ACM Conference on Computer supported cooperative work, pp. 189–192. ACM (2010)Google Scholar
  16. 16.
    Java, A., Song, X., Finin, T., et al.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56–65. ACM 2007Google Scholar
  17. 17.
    Wu, S., Hofman, J.M., Mason, W.A., et al.: Who says what to whom on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 705–714. ACM (2011)Google Scholar
  18. 18.
    Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment in Twitter events. J. Am. Soc. Inf. Sci. Technol. 62(2), 406–418 (2011)CrossRefGoogle Scholar
  19. 19.
    Thelwall, M., Buckley, K., Paltoglou, G., et al.: Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Technol. 61(12), 2544–2558 (2010)CrossRefGoogle Scholar
  20. 20.
    Thelwall, M., Byrne, A., Goody, M.: Which types of news story attract bloggers. Inf. Res. 12(4), 12–14 (2007)Google Scholar
  21. 21.
    Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 695–704. ACM (2011)Google Scholar
  22. 22.
    Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–41. ACM (2012)Google Scholar
  23. 23.
    Myers, S.A., Leskovec, J.: Clash of the contagions: cooperation and competition in information diffusion. In: ICDM, vol. 12, pp. 539–548 (2012)Google Scholar
  24. 24.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001)CrossRefGoogle Scholar
  25. 25.
    Goldenberg, J., Libai, B., Muller, E.: Using complex systems analysis to advance marketing theory development: modeling heterogeneity effects on new product growth through stochastic cellular automata. Acad. Mark. Sci. Rev. 9(3), 1–18 (2001)Google Scholar
  26. 26.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420 (1978)CrossRefGoogle Scholar
  27. 27.
    Gruhl, D., Guha, R., Liben-Nowell, D., et al.: Information diffusion through blogspace. In: Proceedings of the 13th International Conference on World Wide Web, pp. 491–501. ACM (2004)Google Scholar
  28. 28.
    Song, X., Chi, Y., Hino, K., et al.: Information flow modeling based on diffusion rate for prediction and ranking. In: Proceedings of the 16th International Conference on World Wide Web, pp. 191–200. ACM (2007)Google Scholar
  29. 29.
    Saito, K., Kimura, M., Ohara, K., Motoda, H.: Behavioral analyses of information diffusion models by observed data of social network. In: Chai, S.-K., Salerno, J.J., Mabry, P.L. (eds.) SBP 2010. LNCS, vol. 6007, pp. 149–158. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Saito, K., Kimura, M., Ohara, K., et al.: Selecting Information Diffusion Models Over Social Networks For Behavioral Analysis Machine Learning and Knowledge Discovery in Databases, pp. 180–195. Springer, Berlin Heidelberg (2010)Google Scholar
  31. 31.
    Galuba, W., Aberer, K., Chakraborty, D., et al.: Outtweeting the twitterers-predicting information cascades in microblogs. In: Proceedings of the 3rd Conference on Online Social Networks. USENIX Association, pp. 3–3 (2010)Google Scholar
  32. 32.
    Guille, A., Hacid, H.A: Predictive model for the temporal dynamics of information diffusion in online social networks. In: Proceedings of the 21st International Conference Companion on World Wide Web, pp. 1145–1152. ACM (2012)Google Scholar
  33. 33.
    Ho, C.T., Li, C.T., Lin, S.D.: Modeling and visualizing information propagation in a micro-blogging platform. In: 2011 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 328–335. IEEE (2011)Google Scholar
  34. 34.
    Zinoviev, D., Duong, V.A.: Game theoretical approach to modeling full-duplex information dissemination. In: Proceedings of the 2010 Summer Computer Simulation Conference. Society for Computer Simulation International, pp. 358–363 (2010)Google Scholar
  35. 35.
    Zinoviev, D., Duong, V., Zhang, H.: A game theoretical approach to modeling information dissemination in social networks. arXiv preprint arXiv:1006.5493 (2010)
  36. 36.
    Abdullah, S., Wu, X.: An epidemic model for news spreading on twitter. In: 2011 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 163–169. IEEE (2011)Google Scholar
  37. 37.
    Xiong, F., Liu, Y., Zhang, Z., et al.: An information diffusion model based on retweeting mechanism for online social media. Phys. Lett. A 376(30), 2103–2108 (2012)CrossRefGoogle Scholar
  38. 38.
    Yang, J., Leskovec, J.: Modeling information diffusion in implicit networks. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 599–608. IEEE (2010)Google Scholar
  39. 39.
    Bakshy, E., Karrer, B., Adamic L.A.: Social influence and the diffusion of user-created content. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 325–334. ACM (2009)Google Scholar
  40. 40.
    Lokhov, A.Y., Mézard, M., Ohta, H., et al.: Inferring the origin of an epidemic with dynamic message-passing algorithm. arXiv preprint arXiv:1303.5315 (2013)
  41. 41.
    Antulov-Fantulin, N., Lancic, A., Stefancic, H., et al.: Statistical inference framework for source detection of contagion processes on arbitrary network structures. arXiv preprint arXiv:1304.0018 (2013)
  42. 42.
    Golder, S.A., Wilkinson, D.M., Huberman, B.A.: Rhythms of social interaction: messaging within a massive online network. Communities and Technologies, pp. 41–66. Springer, London (2007)Google Scholar
  43. 43.
    Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the fourth ACM International Conference on Web Search and Data Mining, pp. 177–186. ACM (2011)Google Scholar
  44. 44.
    Crane, R., Sornette, D.: Robust dynamic classes revealed by measuring the response function of a social system[J]. Proc. National Acad. Sci. 105(41), 15649–15653 (2008)CrossRefGoogle Scholar
  45. 45.
    Gomez R.M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1019-1028. ACM (2010)Google Scholar
  46. 46.
    Beutel, A., Prakash, B.A, Rosenfeld, R., et al.: Interacting viruses in networks: can both survive?. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434. ACM (2012)Google Scholar
  47. 47.
    Sahneh, F.D., Scoglio, C.: May the best meme win!: new exploration of competitive epidemic spreading over arbitrary multi-layer networks. arXiv preprint arXiv:1308.4880 (2013)Google Scholar
  48. 48.
    Szabo, G., Huberman, B.A.: Predicting the popularity of online content. Commun. ACM 53(8), 80–88 (2010)CrossRefGoogle Scholar
  49. 49.
    Bao, P., Shen, H.W., Huang, J., et al.: Popularity prediction in microblogging network: a case study on sina weibo. In: Proceedings of the 22nd International Conference on World Wide Web companion. International World Wide Web Conferences Steering Committee, pp. 177–178 (2013)Google Scholar
  50. 50.
    Arnaboldi, V., Conti, M., Passarella, A., et al.: Dynamics of personal social relationships in online social networks: a study on twitter. In: Proceedings of the First ACM Conference on Online Social Networks, pp. 15–26. ACM (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.National Center for Materials Service SafetyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations