Joint European Conference on Machine Learning and Knowledge Discovery in Databases

ECML PKDD 2015: Machine Learning and Knowledge Discovery in Databases pp 736-751

Response-Guided Community Detection: Application to Climate Index Discovery

  • Gonzalo A. Bello
  • Michael Angus
  • Navya Pedemane
  • Jitendra K. Harlalka
  • Fredrick H. M. Semazzi
  • Vipin Kumar
  • Nagiza F. Samatova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9285)

Abstract

Discovering climate indices–time series that summarize spatiotemporal climate patterns–is a key task in the climate science domain. In this work, we approach this task as a problem of response-guided community detection; that is, identifying communities in a graph associated with a response variable of interest. To this end, we propose a general strategy for response-guided community detection that explicitly incorporates information of the response variable during the community detection process, and introduce a graph representation of spatiotemporal data that leverages information from multiple variables.

We apply our proposed methodology to the discovery of climate indices associated with seasonal rainfall variability. Our results suggest that our methodology is able to capture the underlying patterns known to be associated with the response variable of interest and to improve its predictability compared to existing methodologies for data-driven climate index discovery and official forecasts.

Keywords

Community detection Spatiotemporal data Climate index discovery Seasonal rainfall prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Black, E., Slingo, J., Sperber, K.R.: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Weather Rev. 131(1), 74–94 (2003)CrossRefGoogle Scholar
  2. 2.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On finding graph clusterings with maximum modularity. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 121–132. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  4. 4.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: Complex networks in climate dynamics. The European Physical Journal-Special Topics 174(1), 157–179 (2009)CrossRefGoogle Scholar
  6. 6.
    Eaton, E., Mansbach, R.: A spin-glass model for semi-supervised community detection. In: Proc. of the 26th AAAI Conference on Artificial Intelligence, pp. 900–906. AAAI (2012)Google Scholar
  7. 7.
    Fisher, R.A.: Statistical methods for research workers. Edinburgh (1934)Google Scholar
  8. 8.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gray, W.M.: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Weather Rev. 112(9), 1649–1668 (1984)CrossRefGoogle Scholar
  10. 10.
    Guimerà, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433(7028), 895–900 (2005)CrossRefGoogle Scholar
  11. 11.
    Harenberg, S., Bello, G.A., Gjeltema, L., et al.: Community detection in large-scale networks: a survey and empirical evaluation. WIREs Comput. Stat. (1939-0068) (2014)Google Scholar
  12. 12.
    Harenberg, S., Seay, R.G., Ranshous, S., et al.: Memory-efficient query-driven community detection with application to complex disease associations. In: Proc. of the 2014 SIAM Int. Conf. on Data Mining, pp. 1010–1018. SIAM (2014)Google Scholar
  13. 13.
    Kalnay, E., Kanamitsu, M., Kistler, R., et al.: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 77(3), 437–471 (1996)CrossRefGoogle Scholar
  14. 14.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simmulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5), 056117 (2009)CrossRefGoogle Scholar
  16. 16.
    Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131 (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRefGoogle Scholar
  18. 18.
    Omondi, P., Ogallo, L.A., Anyah, R., et al.: Linkages between global sea surface temperatures and decadal rainfall variability over Eastern Africa region. Int. J. of Climatol. 33(8), 2082–2104 (2013)CrossRefGoogle Scholar
  19. 19.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schiermeier, Q.: The real holes in climate science. Nature 463(7279), 284–287 (2010)CrossRefGoogle Scholar
  21. 21.
    Smith, T.M., Reynolds, R.W., Peterson, T.C., Lawrimore, J.: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate 21(10), 2283–2296 (2008)CrossRefGoogle Scholar
  22. 22.
    Steinbach, M., Tan, P.N., Kumar, V., et al.: Discovery of climate indices using clustering. In: Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 446–455. ACM (2003)Google Scholar
  23. 23.
    Steinhaeuser, K., Chawla, N.V., Ganguly, A.R.: An exploration of climate data using complex networks. ACM SIGKDD Explor. Newsl. 12(1), 25–32 (2010)CrossRefGoogle Scholar
  24. 24.
    Steinhaeuser, K., Chawla, N.V., Ganguly, A.R.: Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Statistical Analysis and Data Mining 4(5), 497–511 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tsonis, A.A., Roebber, P.J.: The architecture of the climate network. Phys. A 333, 497–504 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gonzalo A. Bello
    • 1
  • Michael Angus
    • 1
  • Navya Pedemane
    • 1
  • Jitendra K. Harlalka
    • 1
  • Fredrick H. M. Semazzi
    • 1
  • Vipin Kumar
    • 2
  • Nagiza F. Samatova
    • 1
    • 3
  1. 1.North Carolina State UniversityRaleighUSA
  2. 2.University of MinnesotaMinneapolisUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations