Structure Preserving Bisimilarity, Supporting an Operational Petri Net Semantics of CCSP

  • Rob J. van Glabbeek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9360)


In 1987 Ernst-Rüdiger Olderog provided an operational Petri net semantics for a subset of CCSP, the union of Milner’s CCS and Hoare’s CSP. It assigns to each process term in the subset a labelled, safe place/transition net. To demonstrate the correctness of the approach, Olderog established agreement (1) with the standard interleaving semantics of CCSP up to strong bisimulation equivalence, and (2) with standard denotational interpretations of CCSP operators in terms of Petri nets up to a suitable semantic equivalence that fully respects the causal structure of nets. For the latter he employed a linear-time semantic equivalence, namely having the same causal nets.

This paper strengthens (2), employing a novel branching-time version of this semantics—structure preserving bisimilarity—that moreover preserves inevitability. I establish that it is a congruence for the operators of CCSP.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Autant, C., Belmesk, Z., Schnoebelen, P.: Strong bisimilarity on nets revisited. In: Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) Proc. PARLE 1991. LNCS, vol. 506, pp. 295–312. Springer, Heidelberg (1991)Google Scholar
  2. 2.
    Best, E., Devillers, R., Kiehn, A., Pomello, L.: Concurrent Bisimulations in Petri nets. Acta Informatica 28, 231–264 (1991). doi: 10.1007/BF01178506 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM 31(3), 560–599 (1984). doi: 10.1145/828.833 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Castellano, L., De Michelis, G., Pomello, L.: Concurrency vs interleaving: an instructive example. Bulletin of the EATCS 31, 12–15 (1987)zbMATHGoogle Scholar
  5. 5.
    Degano, P., De Nicola, R., Montanari, U.: CCS is an (augmented) contact free C/E system. In: Zilli, M.V. (ed.) MMSP 1987. LNCS, vol. 280, pp. 144–165. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  6. 6.
    Emerson, E.A., Clarke, E.M.: Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons. Science of Computer Programming 2(3), 241–266 (1982). doi: 10.1016/0167-6423(83)90017-5 CrossRefzbMATHGoogle Scholar
  7. 7.
    Engelfriet, J.: Branching Processes of Petri Nets. Acta Informatica 28(6), 575–591 (1991). doi: 10.1007/BF01463946 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.: A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying and Analysing AODV. Technical Report 5513, NICTA, Sydney, Australia (2013).
  9. 9.
    Genrich, H., Stankiewicz-Wiechno, E.: A dictionary of some basic notions of net theory. In: Brauer, W. (ed.) Advanced Course: Net Theory and Applications. LNCS, vol. 84, pp. 519–531. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  10. 10.
    van Glabbeek, R.J.: The refinement theorem for ST-bisimulation semantics. In: Broy, M., Jones, C.B. (eds.) Proceedings IFIP TC2 Working Conference on Programming Concepts and Methods. IFIP, pp. 27–52. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    van Glabbeek, R.J.: The linear time - branching time spectrum I; the semantics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, vol. 1, pp. 3–99. Elsevier (2001). doi: 10.1016/B978-044482830-9/50019-9
  12. 12.
    van Glabbeek, R.J.: The individual and collective token interpretations of petri nets. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 323–337. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  13. 13.
    van Glabbeek, R.J., Goltz, U.: Refinement of Actions and Equivalence Notions for Concurrent Systems. Acta Informatica 37, 229–327 (2001). doi: 10.1007/s002360000041 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    van Glabbeek, R.J., Höfner, P.: CCS: It’s not fair!. Acta Informatica 52(2–3), 175–205 (2015). doi: 10.1007/s00236-015-0221-6 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    van Glabbeek, R.J., Höfner, P.: Progress, Fairness and Justness in Process Algebra (2015).
  16. 16.
    van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) Proc. PARLE. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987) CrossRefGoogle Scholar
  17. 17.
    van Glabbeek, R.J., Vaandrager, F.W.: The Difference Between Splitting in \(n\) and \(n\mathord +1\). Information and Comput. 136(2), 109–142 (1997). doi: 10.1006/inco.1997.2634 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Goltz, U., Mycroft, A.: On the relationship of CCS and Petri nets. In: Paredaens, J. (ed.) Proceedings \( 11^{th}\) ICALP. LNCS, vol. 172, pp. 196–208. Springer, Heidelberg (1984) CrossRefGoogle Scholar
  19. 19.
    Goltz, U., Reisig, W.: The Non-Sequential Behaviour of Petri Nets. Information and Control 57(2–3), 125–147 (1983). doi: 10.1016/S0019-9958(83)80040-0 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985) zbMATHGoogle Scholar
  21. 21.
    Loogen, R., Goltz, U.: Modelling nondeterministic concurrent processes with event structures. Fundamenta Informaticae 14(1), 39–74 (1991)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Mazurkiewicz, A.W., Ochmanski, E., Penczek, W.: Concurrent Systems and Inevitability. TCS 64(3), 281–304 (1989). doi: 10.1016/0304-3975(89)90052-2 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition Petri nets. Mathematical Structures in Computer Science 7(4), 359–397 (1997). doi: 10.1017/S0960129597002314 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, chap. 19. Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242 (1990). Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, of which an earlier version appeared as A Calculus of Communicating Systems. LNCS, vol. 92. Springer (1980). doi: 10.1007/3-540-10235-3
  25. 25.
    Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I. TCS 13(1), 85–108 (1981). doi: 10.1016/0304-3975(81)90112-2 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Olderog, E.-R.: Operational Petri net semantics for CCSP. In: Rozenberg, G. (ed.) Advances in Petri Nets 1987. LNCS, vol. 266, pp. 196–223. Springer, Heidelberg (1987) CrossRefGoogle Scholar
  27. 27.
    Olderog, E.-R.: Nets, Terms and Formulas: Three Views of Concurrent Processes and their Relationship. Cambridge Tracts in Theor. Comp. Sc. 23. Cambridge University Press (1991)Google Scholar
  28. 28.
    Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating processes. Acta Informatica 23, 9–66 (1986). doi: 10.1007/BF00268075 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Petri, C.A.: Non-sequential processes. Internal Report GMD-ISF-77.05, GMD, St. Augustin (1977)Google Scholar
  30. 30.
    Plotkin, G.D.: A Structural Approach to Operational Semantics. The Journal of Logic and Algebraic Programming 60–61, 17–139 (2004). doi: 10.1016/j.jlap.2004.05.001. Originally appeared in 1981MathSciNetzbMATHGoogle Scholar
  31. 31.
    Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE (1977). doi: 10.1109/SFCS.1977.32
  32. 32.
    Rabinovich, A., Trakhtenbrot, B.A.: Behavior Structures and Nets. Fundamenta Informaticae 11(4), 357–404 (1988)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Reisig, W.: Petri nets – an introduction. EATCS Monographs on Theoretical Computer Science, vol. 4. Springer (1985). doi: 10.1007/978-3-642-69968-9
  34. 34.
    Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Studies. Springer (2013). doi: 10.1007/978-3-642-33278-4
  35. 35.
    Winskel, G.: A new definition of morphism on Petri nets. In: Fontet, M., Mehlhorn, K. (eds.) STACS 84. LNCS, vol. 166, pp. 140–150. Springer, Heidelberg (1984) CrossRefGoogle Scholar
  36. 36.
    Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets: Applications and Relationships to Other Models of Concurrency. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1986) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.NICTASydneyAustralia
  2. 2.Computer Science and EngineeringUNSWSydneyAustralia

Personalised recommendations