Advertisement

Image Analysis and Classification for High-Throughput Screening of Embryonic Stem Cells

  • Laura Casalino
  • Pasqua D’Ambra
  • Mario R. Guarracino
  • Antonio Irpino
  • Lucia Maddalena
  • Francesco Maiorano
  • Gabriella Minchiotti
  • Eduardo Jorge Patriarca

Abstract

Embryonic Stem Cells (ESCs) are of great interest for providing a resource to generate useful cell types for transplantation or novel therapeutic studies. However, molecular events controlling the unique ability of ESCs to self-renew as pluripotent cells or to differentiate producing somatic progeny have not been fully elucidated yet. In this context, the Colony Forming (CF) assay provides a simple, reliable, broadly applicable, and highly specific functional assay for quantifying undifferentiated pluripotent mouse ESCs (mESCs) with self-renewal potential. In this paper, we discuss first results obtained by developing and using automatic software tools, interfacing image processing modules with machine learning algorithms, for morphological analysis and classification of digital images of mESC colonies grown under standardized assay conditions. We believe that the combined use of CF assay and the software tool should enhance future elucidation of the mechanisms that regulate mESCs propagation, metastability, and early differentiation.

Keywords

Classification Colony assay Imaging Segmentation Stem cells 

Notes

Acknowledgements

This work was partially supported by public-private laboratory for the development of integrated informatics tools for genomics, proteomics and transcriptomics (LAB GPT), funded by MIUR. We also thank the Integrated Microscopy Facility at the IGB-ABT, CNR.

References

  1. 1.
    Bar, L., et al.: Mumford and Shah model and its applications to image segmentation and image restoration. Handbook of Mathematical Methods in Imaging, vol. I, pp. 1095–1157. Springer, New York (2011)Google Scholar
  2. 2.
    Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chapman & Hall, New York (1984)Google Scholar
  3. 3.
    Carpenter, A., Jones, T., Lamprecht, M., Clarke, C., Kang, I., Friman, O., Guertin, D., Chang, J., Lindquist, R., Moffat, J., Golland, P., Sabatini, D.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(R100) (2006)Google Scholar
  4. 4.
    Casalino, L., Comes, S., Lambazzi, G., De Stefano, B., Filosa, S., De Falco, S., De Cesare, D., Minchiotti, G., Patriarca, E.: Control of embryonic stem cell metastability by l-proline catabolism. J. Mol. Cell Biol. 3(2), 108– (2011)Google Scholar
  5. 5.
    Celebi, M., Kingravi, H., Uddin, B., Iyatomi, H., Aslandogan, Y., Stoecker, W., Moss, R.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)Google Scholar
  6. 6.
    Chen CH Pau LF, W.P.: The Handbook of Pattern Recognition and Computer Vision (2nd Edition). World Scientific Publishing Co, Singapore (1998)Google Scholar
  7. 7.
    Cozza, V., Guarracino, M.R., Maddalena, L., Baroni, A.: Dynamic clustering detection through multi-valued descriptors of dermoscopic images. Stat. Med. 30, 2536–2550 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    D’Ambra, P., Filippone, S.: A parallel generalized relaxation method for high-performance image segmentation on gpus. J. of Comput. Appl. Math. 293, 34–44 (2016)MathSciNetGoogle Scholar
  9. 9.
    D’Ambra, P., Tartaglione, G.: Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method. Commun. Nonlinear Sci. Numer. Simul. 20, 819–831 (2015)CrossRefGoogle Scholar
  10. 10.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)CrossRefzbMATHGoogle Scholar
  11. 11.
    Freund, Y., Schapire, R.E.: A short introduction to boosting. In: In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 1401–1406. Morgan Kaufmann (1999)Google Scholar
  12. 12.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  13. 13.
    Haralick, R., Shanmugam, K.: Computer classification of reservoir sandstones. IEEE Trans. Geosci. Electron. 11, 171–177 (1973)CrossRefGoogle Scholar
  14. 14.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2 edn. Springer, New York (2013)Google Scholar
  15. 15.
    John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann, San Mateo (1995)Google Scholar
  16. 16.
    Maddalena, L., Petrosino, A.: The 3dSOBS+ algorithm for moving object detection. Comp. Vision Image Underst. 122(0), 65–73 (2014)Google Scholar
  17. 17.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man and Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B, Burges, C, Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1998)Google Scholar
  19. 19.
    Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  20. 20.
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)Google Scholar
  21. 21.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc, New York (1983)Google Scholar
  22. 22.
    Shariff, A., Kangas, J., Coelho, L., Quinn, S., Murphy, R.: Automated image analysis for high content screening and analysis. J. Biomol. Screening 15, 726–734 (2010)CrossRefGoogle Scholar
  23. 23.
    Tighe, A., Gudas, L.: Retinoic acid inhibits leukemia inhibitory factor signaling pathways in mouse embryonic stem cells. J Cell Physiol. 198(2), 223–229 (2004)CrossRefGoogle Scholar
  24. 24.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zhou, X., Wong, S.T.: Informatics challenges of high-throughput microscopy. IEEE Signal Process. Mag. 23, 63–72 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Laura Casalino
    • 1
  • Pasqua D’Ambra
    • 2
  • Mario R. Guarracino
    • 2
  • Antonio Irpino
    • 3
  • Lucia Maddalena
    • 2
  • Francesco Maiorano
    • 2
  • Gabriella Minchiotti
    • 1
  • Eduardo Jorge Patriarca
    • 1
  1. 1.Institute of Genetics and Biophysics “A. Buzzati-Traverso”CNRNaplesItaly
  2. 2.Institute for High-Performance Computing and NetworkingCNRNaplesItaly
  3. 3.Department of Political Science “J. Monnet”Second University of NaplesCasertaItaly

Personalised recommendations