Advertisement

Wheat–Aegilops Introgressions

  • Peng Zhang
  • Ian S. Dundas
  • Robert A. McIntosh
  • Steven S. Xu
  • Robert F. Park
  • Bikram S. Gill
  • Bernd FriebeEmail author

Abstract

Aegilops is the most closely related genus to Triticum in the tribe Triticeae. Aegilops speltoides Tausch (B genome donor) and Ae. tauschii Coss. (D genome donor) contributed two of the three genomes present in common wheat (Triticum aestivum L., 2n = 6× = 42, AABBDD genomes). The Aegilops genus consists of 10 diploid and 12 polyploid species, all can be crossed readily with common wheat and represent a large reservoir of agronomically useful genes that can be exploited in wheat improvement. Since the 1950s, many unique genes for disease and pest resistance have been transferred into wheat from various Aegilops species. In this chapter we review all formally named genes transferred from Aegilops species into wheat except those transferred from Ae. tauschii, which belongs to the primary gene pool of wheat and is covered in a separate chapter. This review provides useful information to wheat breeders on the available resistant germplasm for breeding programs. It also provides guidance to cytogeneticists to further utilize chromosome engineering to directly develop agronomically superior germplasm with good disease and pest resistance.

Keywords

Triticum aestivum Aegilops Disease and pest resistance Homoeologous recombination Radiation Univalent misdivision 

References

  1. Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS (2002) Ph I-induced transfer of leaf and stripe rust resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382. doi: 10.1023/A:1020334821122 CrossRefGoogle Scholar
  2. Ambrozková M, Dedryver F, Dumalasová V, Hanzalová A, Bartoš P (2002) Determination of the cluster of wheat rust resistance genes Yr17, Lr37 and Sr38 by a molecular marker. Plant Protect Sci 38:41–45Google Scholar
  3. Andersson MS, de Vicente MC (2010) Gene flow between crops and their wild relatives. The Johns Hopkins University Press, Baltimore, MD, p 514Google Scholar
  4. Badaeva ED, Dekova OS, Koenig J, Bernard S, Bernard M (2008) Analysis of the introgression of Aegilops ventricosa Tausch genetic material in a common wheat background using C-banding. Theor Appl Genet 117:803–811. doi: 10.1007/s00122-008-0821-4 CrossRefPubMedGoogle Scholar
  5. Bai D, Scoles GJ, Knott DR (1995) Rust resistance in Triticum cylindricum Ces. (4x, CCDD) and its transfer into durum and hexaploid wheats. Genome 38:8–16. doi: 10.1139/g95-002 CrossRefPubMedGoogle Scholar
  6. Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and its genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482. doi: 10.1139/g93-065 CrossRefPubMedGoogle Scholar
  7. Bariana HS, McIntosh RA (1994) Characterization and origin of rust resistance and powdery mildew resistance in VPM1. Euphytica 76:53–61. doi: 10.1007/BF00024020 CrossRefGoogle Scholar
  8. Barloy D, Lemoine J, Dedryer F, Jahier J, McIntosh RA (2000) Molecular markers linked to the Aegilops variabilis-derived root-knot nematode resistance gene Rkn-mn1 in wheat. Plant Breed 119:169–172. doi: 10.1046/j.1439-0523.2000.00451.x CrossRefGoogle Scholar
  9. Biagetti M, Vitellozzi F, Ceoloni C (1998) Physical mapping of wheat-Aegilops longissima breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low-copy DNA probes. Genome 42:1013–1019. doi: 10.1139/gen-42-5-1013 CrossRefGoogle Scholar
  10. Bonhomme A, Gale MD, Koebner RMD, Nicolas P, Jahier J, Bernard M (1995) RFLP analysis of an Aegilops ventricosa chromosome that carries a gene conferring resistance to leaf rust (Puccinia recondita) when transferred to hexaploid wheat. Theor Appl Genet 90:1042–1048. doi: 10.1007/BF00222919 CrossRefPubMedGoogle Scholar
  11. Ceoloni C (1984) Transfer of a mildew resistance gene from Triticum longissimum to common wheat by induced homoeologous recombination. Genetica Agraria 38:326–327Google Scholar
  12. Ceoloni C, Del Signore G, Pasquini M, Testa A (1988) Transfer of mildew resistance from Triticum longissimum into wheat by ph1b induced homeologous recombination. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th International Wheat Genetics Symposium. The Institute of Plant Science Research, Cambridge, UK, pp 221–226Google Scholar
  13. Ceoloni C, Del Signore G, Ercoli L, Donini P (1992) Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistant transfers. Hereditas 116:239–245. doi: 10.1111/j.1601-5223.1992.tb00148.x CrossRefGoogle Scholar
  14. Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88:97–101. doi: 10.1007/BF00222400 PubMedGoogle Scholar
  15. Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730. doi: 10.1007/s00122-013-2253-z CrossRefPubMedPubMedCentralGoogle Scholar
  16. Delibes A, Lopez-Brana I, Mena M, Garcia-Olmedo F (1987) Genetic transfer of resistance to powdery mildew and of an associated biochemical marker from Aegilops ventricosa to hexaploid wheat. Theor Appl Genet 73:605–608. doi: 10.1007/BF00289201 CrossRefPubMedGoogle Scholar
  17. Delibes A, Romero D, Aguaded S, Duce A, Mena M, Lopez-Brana I, Andres MF, Martin-Sanchez JA, Garcia-Olmedo F (1993) Resistance to cereal cyst nematode (Heterodera avenae Woll.) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a ‘stepping stone’ procedure. Theor Appl Genet 87:402–408. doi: 10.1007/BF01184930 CrossRefPubMedGoogle Scholar
  18. Delibes A, Del Moral J, Martin-Sanchez JA, Mejias A, Gallego M, Casado D, Sin E, Lopez-Brana I (1997) Hessian fly-resistance gene transferred from Chromosome 4Mv of Aegilops ventricosa to Triticum aestivum. Theor Appl Genet 94:858–864. doi: 10.1007/s001220050487 CrossRefGoogle Scholar
  19. Donini P, Koebner RMD, Ceoloni C (1995) Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines. Theor Appl Genet 91:738–743. doi: 10.1007/BF00220952 CrossRefPubMedGoogle Scholar
  20. Doussinault G, Delibes A, Sanchez-Monge R, Garcia-Olmedo F (1983) Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature 303:698–700. doi: 10.1038/303698a0 CrossRefGoogle Scholar
  21. Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655–1660. doi: 10.2135/cropsci1998.0011183X003800060040x CrossRefGoogle Scholar
  22. Dundas IS, Verlin DC, Park RF et al. (2008) Rust resistance in Aegilops speltoides var. ligustica. In: Appels R et al. (eds) Proceedings of the 11th International Wheat Genetics Symposium, vol 1, Brisbane, Australia, Vol., pp 200–202Google Scholar
  23. Dvorak J (1977) Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can J Genet Cytol 19:133–141. doi: 10.1139/g77-016 CrossRefGoogle Scholar
  24. Dvorak J, Knott DR (1980) Chromosome location of two leaf rust resistance genes transferred from T. speltoides to T. aestivum. Can J Genet Cytol 22:281–289. doi: 10.1139/g80-047 Google Scholar
  25. Dvorak J, Knott DR (1990) Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome 33:892–897. doi: 10.1139/g90-134 CrossRefGoogle Scholar
  26. Dyck PL, Kerber ER, Martens JW (1990) Transfer of a gene for stem rust resistance from Aegilops caudata to common wheat. Can J Plant Sci 70:931–934. doi: 10.4141/cjps90-114 CrossRefGoogle Scholar
  27. Fan L, Han JY, Deng JY (1995) Transfer of gene for resistance to powdery mildew from Ae. triuncialis to common wheat by using Chinese Spring Ta1 kr ph1b plants. In: Li ZS, Xin ZY (eds) Proceedings of the 8th International Wheat Genetics Symposium, Beijing, China, 20–25 July, 1993, vol 1. China Agricultural Scientech Press, Beijing, pp 489–493Google Scholar
  28. Faris JD, Xu SS, Cai X, Friesen TL, Jin Y (2008) Molecular and cytogenetic characterization of a durum wheat-Ae. speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res 16:1097–1105. doi: 10.1007/s10577-008-1261-3 CrossRefPubMedGoogle Scholar
  29. Friebe B, Heun M (1989) C-banding pattern and powdery mildew resistance of Triticum ovatum and four T. aestivum-T. ovatum chromosome addition lines. Theor Appl Genet 78:417–424. doi: 10.1007/BF00265306 PubMedGoogle Scholar
  30. Friebe B, Mukai Y, Dhaliwal H, Martin TJ, Gill BS (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic virus and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor Appl Genet 81:381–389Google Scholar
  31. Friebe B, Jiang J, Tuleen N, Gill BS (1995) Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor Appl Genet 90:150–156. doi: 10.1007/BF00221010 CrossRefPubMedGoogle Scholar
  32. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. doi: 10.1007/BF00035277 CrossRefGoogle Scholar
  33. Friebe B, Zhang P, Nasuda S, Gill BS (2003) Characterization of a knock-out mutation at the Gc2 locus in wheat. Chromosoma 111:509–517. doi: 10.1007/s00412-003-0234-8 CrossRefPubMedGoogle Scholar
  34. Friebe B, Zhang P, Linc G, Gill BS (2005) Robertsonian translocations in wheat arise by centric misdivision of univalent at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet Genome Res 109:293–297. doi: 10.1159/000082412 CrossRefPubMedGoogle Scholar
  35. Gale MD, Miller TE (1987) The introduction of alien genetic variation in wheat. In: Lupton FGH (ed) Wheat breeding, its scientific basis. Chapman and Hall, London, New York, pp 173–210CrossRefGoogle Scholar
  36. Garcia-Olmedo F, Delibes A, Sanchez-Monge R (1984) Transfer of resistance to eyespot disease from Aegilops ventricosa to wheat. Vortrage fur Pflanzenzuchtung 6:156–168Google Scholar
  37. Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J, Dubcovsky J (2005) PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci 45:728–734. doi: 10.2135/cropsci2005.0728 CrossRefGoogle Scholar
  38. Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133:367–370. doi: 10.1023/A:1025738513638 CrossRefGoogle Scholar
  39. Jahier J, Doussinault G, Dosba F, Bourgois E (1979) Monosomic analysis of resistance to eyespot in the variety ‘Roazon’. In: Ramanujam S (ed) Proceedings of the 5th International Wheat Genetics Symposium. Indian Society of Genetics & Plant Breeding, New Delhi, India, pp 437–440Google Scholar
  40. Jahier J, Tanguy AM, Doussinault G (1989) Analysis of the level of eyespot resistance due to genes transferred to wheat from Aegilops ventricosa. Euphytica 44:55–59. doi: 10.1007/BF00022599 CrossRefGoogle Scholar
  41. Jahier J, Abelard P, Tanguy AM, Dedryver F, Rivoal R, Khathar S, Bariana HS (2001) The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar VPM1 carries the cereal cyst nematode resistance gene Cre5. Plant Breed 120:125–128. doi: 10.1046/j.1439-0523.2001.00585.x CrossRefGoogle Scholar
  42. Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565. doi: 10.1007/BF00224558 CrossRefPubMedGoogle Scholar
  43. Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides x Triticum monococcum. Genome 33:530–537. doi: 10.1139/g90-079 CrossRefGoogle Scholar
  44. Klindworth DL, Niu Z, Chao S, Friesen TL, Jin Y, Faris JD, Cai X, Xu SS (2012) Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat. G3 2:665–673. doi: 10.1534/g3.112.002386 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007a) A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003. doi: 10.2135/cropsci2007.01.0038 CrossRefGoogle Scholar
  46. Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007b) Characterization and mapping of cryptic alien introgressions from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389. doi: 10.1007/s00122-007-0524-2 CrossRefPubMedGoogle Scholar
  47. Kuraparthy V, Sood S, Gill BS (2009) Molecular genetic description of the cryptic wheat–Aegilops geniculata introgression carrying rust resistance genes Lr57 and Yr40 using wheat ESTs and synteny with rice. Genome 52:1025–1036. doi: 10.1139/G09-076 CrossRefPubMedGoogle Scholar
  48. Lay CL, Wells DG, Gardner WAS (1971) Immunity from wheat streak mosaic virus in irradiated Agrotricum progenies. Crop Sci 1:431–432. doi: 10.2135/cropsci1971.0011183X001100030037x CrossRefGoogle Scholar
  49. Liu WX, Jin Y, Rouse M, Friebe B, Gill BS, Pumphrey MO (2011a) Development and characterization of wheat–Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor Appl Genet 122:1537–1545. doi: 10.1007/s00122-011-1553-4 CrossRefPubMedGoogle Scholar
  50. Liu W, Rouse M, Friebe B, Jin Y, Gill BS, Pumphrey MO (2011b) Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19:669–682. doi: 10.1007/s10577-011-9226-3 CrossRefPubMedGoogle Scholar
  51. Mago R, Zhang P, Bariana HS, Verlin DC, Bansal UK, Ellis JG, Dundas IS (2009) Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor Appl Genet 119:1441–1450. doi: 10.1007/s00122-009-1146-7 CrossRefPubMedGoogle Scholar
  52. Mago R, Verlin D, Zhang P, Bansal U, Bariana H, Jin Y, Ellis J, Hoxha S, Dundas I (2013) Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for stem rust resistance genes on the 2S#1 chromosome. Theor Appl Genet 126:2943–2955. doi: 10.1007/s00122-013-2184-8 CrossRefPubMedGoogle Scholar
  53. Marais GF, Pretorious ZA, Marais AS, Wellings CR (2003) Transfer of rust resistance genes from Triticum species to common wheat. S Afr J Plant Soil 20:193–198. doi: 10.1080/02571862.2003.10634934 CrossRefGoogle Scholar
  54. Marais GF, McCallum B, Snyman JE, Pretorious ZA, Marais AS (2005) Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed 124:538–541. doi: 10.1111/j.1439-0523.2005.01116.x CrossRefGoogle Scholar
  55. Marais GF, McCallum B, Marais AS (2006) Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 149:373–380. doi: 10.1007/s10681-006-9092-9 CrossRefGoogle Scholar
  56. Marais GF, McCallum B, Marais AS (2008) Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breed 124:538–541. doi: 10.1111/j.1439-0523.2008.01513.x CrossRefGoogle Scholar
  57. Marais F, Marais A, McCallum B, Pretorious Z (2009) Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci 49:871–879. doi: 10.2135/cropsci2008.06.0317 CrossRefGoogle Scholar
  58. Marais GF, Kotze L, Eksteen A (2010a) Allosyndetic recombinants of the Aegilops peregrina-derived Lr59 translocation in common wheat. Plant Breed 129:356–361. doi: 10.1111/j.1439-0523.2009.01713.x Google Scholar
  59. Marais GF, Badenhorst PE, Eksteen A, Pretorious ZA (2010b) Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. Euphytica 171:15–22. doi: 10.1007/s10681-009-9973-9 CrossRefGoogle Scholar
  60. Marais GF, Bekker TA, Eksteen A, McCallum B, Fetch T, Marais AS (2010c) Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica 171:71–85. doi: 10.1007/s10681-009-9996-2 CrossRefGoogle Scholar
  61. Martin-Sanchez JA, Gomez-Colmenarejo M, Del Moral J, Sin E, Montes MJ, Gonzalez-Belinchon C, Lopez-Brana I, Delibes A (2003) A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 106:1248–1255. doi: 10.1007/s00122-002-1182-z PubMedGoogle Scholar
  62. McIntosh RA (1991) Alien sources of disease resistance in bread wheats. In: Sasakuma T, Kinoshita T (eds) Nuclear and organellar genomes of wheat species. Proceedings of Dr. Kihara Memorial International Symposium on Cytoplasmic Engineering in Wheat. Yokohama, Japan, pp 320–332Google Scholar
  63. McIntosh RA, Miller TE, Chapman V (1982) Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z Pflanzenzüchtg 89:295–306Google Scholar
  64. McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. In: 12th International Wheat Genetics Symposium, 8–13 September, 2013, Yokohama, Japan. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp
  65. Miftahudin RK, Ma XF, Mahmoud AA, Layton J, Rodriguez M, Chikmawati T et al. (2004) Analysis of EST loci on wheat chromosome group 4. Genetics 168:651–663. doi: 10.1534/genetics.104.034827 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Miller TE, Hutchinson J, Chapman V (1982) Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theor Appl Genet 61:27–33. doi: 10.1007/BF00261506 CrossRefPubMedGoogle Scholar
  67. Miller TE, Reader SM, Ainsworth CC, Summers RW (1987) The introduction of a major gene for resistance to powdery mildew of wheat, Erisiphe graminis f. sp. tritici, from Aegilops speltoides into wheat T. aestivum. In: Jorna ML, Slootmaker LAJ (eds) Cereal breeding related to integrated cereal production. Proceedings of Eucarpia Conference, Wageningen, The Netherlands, pp 179–183Google Scholar
  68. Miller TE, Reader SM, Singh D (1988) Spontaneous non-Robertsonian translocations between wheat chromosomes and an alien chromosome. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th International Wheat Genetics Symposium. UK, Cambridge, pp 387–390Google Scholar
  69. Millet E, Manisterski J, Ben-Yehuda P, Distelfeld A, Deek J, Wan A, Chen X, Steffenson BJ (2014) Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.). Genome 57:309–316. doi: 10.1139/gen-2014-0004 CrossRefPubMedGoogle Scholar
  70. Monneveux P, Zaharieva M, Rekika D (2000) The utilisation of Triticum and Aegilops species for the improvement of durum wheat. In: Royo C, Nachit M, Di Fonzo N, Araus JL (eds.) Seminar on Durum Wheat Improvement in the Mediterranean Region: New Challenges. Zaragoza, Spain, 12–14 April, 2000, pp 71–81Google Scholar
  71. Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang RR-C, Xu S, Chen P, Mahmood T, Bux H, Farrakh S (2013) Genetic diversity for wheat improvement as a conduit to food security. Adv Agron 4:179–257. doi: 10.1016/B978-0-12-417187-9.00004-8 CrossRefGoogle Scholar
  72. Nasuda S, Friebe B, Bush W, Kynast RG, Gill BS (1998) Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the Compair and related wheat-Ae. comosa translocations in wheat improvement. Theor Appl Genet 98:780–785. doi: 10.1007/s001220050802 CrossRefGoogle Scholar
  73. Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1020. doi: 10.1534/genetics.110.123588 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lopez-Brana I, Eastwood RF, Lagudah E (2001) Molecular-genetic characterization of a new nematode resistance gene in wheat. Theor Appl Genet 102:623–629. doi: 10.1007/s001220051689 CrossRefGoogle Scholar
  75. Okamoto M (1957) Asynaptic effect of chromosome V. Wheat Info Serv 5:6Google Scholar
  76. Olivera PD, Steffenson BJ (2009) Aegilops sharonensis: origin, genetics, diversity, and potential for wheat improvement. Botany 87:740–756. doi: 10.1139/B09-040 CrossRefGoogle Scholar
  77. Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Plant Cell 13:1735–1747. doi: 10.1105/tpc.13.8.1735 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19. doi: 10.1007/s10577-006-1108-8 CrossRefPubMedGoogle Scholar
  79. Raupp WJ, Friebe B, Gill BS (1995) Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat, Triticum aestivum L. em Thell., and its relatives. Wheat Info Serv 81:51–55Google Scholar
  80. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715. doi: 10.1038/182713a0 CrossRefGoogle Scholar
  81. Riley R, Chapman V, Johnson R (1968a) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res Camb 12:198–219. doi: 10.1017/S0016672300011800 CrossRefGoogle Scholar
  82. Riley R, Chapman V, Johnson R (1968b) Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384. doi: 10.1038/217383a0 CrossRefGoogle Scholar
  83. Roberts HF (1929) Plant hybridization before Mendel. Princeton University Press, Princeton, pp 123–129CrossRefGoogle Scholar
  84. Romero MD, Montes MJ, Sin E, Lopez-Brana I, Duce A, Martin-Sanchez JA, Andres MF, Delibes A (1998) A cereal cyst nematode (Heterodera avennae Woll.) resistance gene transferred from Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 96:1135–1140. doi: 10.1007/s001220050849 CrossRefGoogle Scholar
  85. Schneider A, Molnar I, Molnar-Lang M (2008) Utilization of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19. doi: 10.1007/s10681-007-9624-y CrossRefGoogle Scholar
  86. Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma 4:535–550. doi: 10.1007/BF00325789 CrossRefPubMedGoogle Scholar
  87. Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22Google Scholar
  88. Sears ER (1972) Chromosome engineering in wheat. In: Stadler Symposium, vol. 4, University of Missouri, Columbia, pp 23–38Google Scholar
  89. Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51. doi: 10.1146/annurev.ge.10.120176.000335 CrossRefPubMedGoogle Scholar
  90. Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593. doi: 10.1139/g77-063 CrossRefGoogle Scholar
  91. Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17–31. doi: 10.1007/BF00036860 CrossRefGoogle Scholar
  92. Sharp PJ, Desai S, Chao S, Gale MD (1988) Isolation, characterization, and applications of a set of 14 RFLP probes identifying each homoeologous chromosome arm in the Triticeae. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, UK, 13–19 July, 1988. Institute of Plant Science Research, Cambridge, UK, pp 639–646Google Scholar
  93. Shepherd KW, Islam AKMR (1988) Fourth compendium of wheat-alien chromosome lines. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, UK, 13–19 July, 1988. Institute of Plant Science Research, Cambridge, UK, pp 1373–1398Google Scholar
  94. Stoyanov H (2014) Representatives of genus Aegilops as a source of pathogens resistance. AgroLife Sci J 3:139–148Google Scholar
  95. Tanguy A-M, Coriton O, Abelard P, Dedryver F, Jahier J (2005) Structure of Aegilops ventricosa chromosome 6Nv, the donor of wheat genes Yr17, Lr37, Sr38, and Cre5. Genome 48:541–546. doi: 10.1139/g05-001 CrossRefPubMedGoogle Scholar
  96. Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov E, Kalia B, Sabir J, Gill BS (2014) SNP discovery for mapping alien introgressions in wheat. BMC Genomics 15:273. doi: 10.1186/1471-2164-15-273 CrossRefPubMedPubMedCentralGoogle Scholar
  97. van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers, Wageningen, The Netherlands. No. 94-7, pp. xiii + 512 ppGoogle Scholar
  98. Wells DG, Sze-Chung R, Lay CL, Gardner WA, Buchenau GW (1973) Registration of C.I. 15092 and C.I. 15093 wheat germplasm. Crop Sci 13:776. doi: 10.2135/cropsci1973.0011183X001300060078x CrossRefGoogle Scholar
  99. Wells DG, Kota RS, Sandhu HS, Gardner WS, Finney KF (1982) Registration of one disomic substitution line and five translocation lines of winter wheat germplasm resistant to wheat streak mosaic virus. Crop Sci 22:1277–1278. doi: 10.2135/cropsci1982.0011183X002200060083x CrossRefGoogle Scholar
  100. Williamson VM, Thomas V, Ferris H, Dubcovsky J (2013) An Aegilops ventricosa translocation confers resistance against root-knot nematodes to common wheat. Crop Sci 53:1412–1418. doi: 10.2135/cropsci2012.12.0681 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Worland AJ, Law CN, Hollins TW, Koebner RMD, Guira A (1988) Location of a gene for resistance to eyespot (Pseudocercosporella herpotrichoides) on chromosome 7D of bread wheat. Plant Breed 101:43–51. doi: 10.1111/j.1439-0523.1988.tb00265.x CrossRefGoogle Scholar
  102. Yu MQ, Jahier J, Person-Dedryer F (1995) Chromosomal location of a gene (Rkn-mn1) for resistance to the root-knot nematode transferred into wheat from Aegilops variabilis. Plant Breed 114:358–360. doi: 10.1111/j.1439-0523.1995.tb01250.x CrossRefGoogle Scholar
  103. Zeller FJ, Kong L, Hartl L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova. Euphytica 123:187–194. doi: 10.1023/A:1014944619304 CrossRefGoogle Scholar
  104. Zhang H, Jia J, Gale MD, Devos KM (1998) Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet 96:69–75. doi: 10.1007/s001220050710 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Peng Zhang
    • 1
  • Ian S. Dundas
    • 2
  • Robert A. McIntosh
    • 1
  • Steven S. Xu
    • 3
  • Robert F. Park
    • 1
  • Bikram S. Gill
    • 4
  • Bernd Friebe
    • 4
    Email author
  1. 1.Plant Breeding InstituteUniversity of SydneyCamdenAustralia
  2. 2.School of Agriculture, Food and Wine, Waite CampusThe University of AdelaideGlen OsmoNDAustralia
  3. 3.USDA-ARS Cereal Crops Research UnitNorthern Crop Science LaboratoryFargoUSA
  4. 4.Department of Plant Pathology, Wheat Genetic Resources CenterKansas State UniversityManhattanUSA

Personalised recommendations