Advertisement

Chapter 2: Homology

  • Anatoly Fomenko
  • Dmitry Fuchs
Chapter
Part of the Graduate Texts in Mathematics book series (GTM, volume 273)

Abstract

Lecture 12 Main Definitions and Constructions Besides the homotopy groups πn(X), there are other series of groups coresponding in a homotopy invariant way to a topological space X; the most notable are homology and cohomology groups, H n (X) and Hn (X).

References

  1. 1.
    Adams J.F. On the non-existence of elements of Hopf invariant one. Ann. Math. 72 (1960), 20–104.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adams J.F. Stable homotopy theory. Springer Lecture Notes, 3 (1961).Google Scholar
  3. 3.
    Adams J.F. Vector fields on spheres. Ann. Math., 75 (1962), 603–632.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Adams J.F. On J(X), I. Topology, 2 (1963), 181–195.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Adams J.F. On J(X), II. Topology, 3 (1965), 137–171.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Adams J.F. On J(X), III. Topology, 3 (1965), 193–222.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Adams J.F. On J(X), IV. Topology, 5 (1966), 21–71.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Adams J.F. A periodicity theorem in homological algebra. Proc. Cambr. Phil. Soc., 61 (1966).Google Scholar
  9. 9.
    Adams J.F. and Atiyah M.F. K-theory and the Hopf invariant. Quarterly J. Math., 17 (1966), 31–38.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Adams J.F. and Walker G. An example in homotopy theory. Proc. Cambr. Phil. Soc., 60 (1969), 699–700.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Adem J. The iteration of Steenrod squares in algebraic topology. Proc. Nat. Acad. Sci., 38 (1952), 720–726.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Adem J. Relations on iterations of reduced powers. Proc. Nat. Acad. Sci., 39 (1953), 636–638.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Anderson D.W. The real K-theory of classifying spaces. Proc. Nat. Acad. Sci. USA, 51 (1964), 634–636.CrossRefzbMATHGoogle Scholar
  14. 14.
    Atiyah M.F Vector bundles and Künneth formula. Topology, 1 (1961), 245–248.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Atiyah M.F On the K-theory of compact Lie groups. Topology, 4 (1965), 95–99.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Atiyah M.F K-theory. Addison-Wesley, 1989.Google Scholar
  17. 17.
    Atiyah M.F. and Hirzebruch F. Riemann–Roch theorems for differentiable manifolds. Bull. Amer. Math. Soc., 65 (1959) 276–281.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Atiyah M.F. and Hirzebruch F. On the non-embeddability of differential manifolds. Colloque de topologie, Lille, 1959.zbMATHGoogle Scholar
  19. 19.
    Atiyah M.F. and Hirzebruch F. Vector bundles and homogeneous spaces. Proc. Symp. Pure Math., III, Amer. Math. Soc. (1961), 7–38.Google Scholar
  20. 20.
    Barratt M.G. and Priddy S.B. On the homology of non-connected monoids and their associated groups. Comment. Math. Helv., 47 (1972), 1–14.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Becker J. and Gottlieb D. The transfer map and fiber bundles. Topology, 14 (1975), 1–12.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Borel A. Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math., (2) 57 (1953), 115–207.Google Scholar
  23. 23.
    Bott R. and Tu L.W. Differential Forms in Algebraic Topology. Springer, 1982.CrossRefzbMATHGoogle Scholar
  24. 24.
    Buchstaber V.M. Modules of differentials of the Atiyah–Hirzebruch spectral sequence. Math. of the USSR—Sbornik, 7 (1969), 299–313.CrossRefGoogle Scholar
  25. 25.
    Buchstaber V.M. Modules of differentials of the Atiyah–Hirzebruch spectral sequence II. Math. of the USSR—Sbornik, 12 (1970), 59–75.CrossRefGoogle Scholar
  26. 26.
    Buchstaber V.M. and Mishchenko A.S. K-theory on the category of infinite cell complexes. Math. of the USSR –Izvestiya, 2 (1968), 515–566.CrossRefGoogle Scholar
  27. 27.
    Buchstaber V.M. and Shokurov A.V. The Landweber–Novikov algebra and formal vector fields on the line. Funct. Anal. Appl., 12 (1978), 159–168.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Cartan H. Sur les groupes d’Eilenberg–MacLane H(Π,n). Proc. Nat. Acad. Sci., 40 (1954), 467–471, 704–707.Google Scholar
  29. 29.
    Cartan H. and Eilenberg S. Homological Algebra. Princeton Univ. Press, 1956.zbMATHGoogle Scholar
  30. 30.
    Chern S.-S. Complex Manifolds. Univ. of Chicago, 1956zbMATHGoogle Scholar
  31. 31.
    Cohen R. The immersion conjecture for differentiable manifolds. Ann. Math., 122 (1985), 237–328.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Conner P.E. and Floyd E.E. The relation of cobordism to K-theories. Springer Lecture Notes in Math., 28 (1966).Google Scholar
  33. 33.
    Deligne P., Griffiths P.A., Morgan J.W., and Sullivan D. Real homotopy theory of Kähler manifolds. Invent. Math, 29 (1965), 245–274.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    de Rham G., Maumary S., and Kervaire M.A.. Torsion et type simple d’homotopie. Springer Lecture Notes, 48 (1967).Google Scholar
  35. 35.
    Dubrovin B.A., Fomenko A.T., and Novikov S.P. Modern Geometry—Methods and Applications: Part III: Introduction to Homology Theory. Springer, 1990.zbMATHGoogle Scholar
  36. 36.
    Félix Y., Halperin S., and Thomas J.-C. Rational Homotopy Theory. Springer, 2001.CrossRefzbMATHGoogle Scholar
  37. 37.
    Fuchs D.B. Quillenization and bordisms. Funct. Anal. and Appl., 8 (1984), 31–36.Google Scholar
  38. 38.
    Fuchs D.B. Cohomology of Infinite-Dimensional Lie Algebras. Consultants Bureau, 1986.Google Scholar
  39. 39.
    Fuchs D.B. Classical manifolds. Encyclopaedia Math. Sci. 24, Topology II, 197–252, Springer, 2004.Google Scholar
  40. 40.
    Fuchs D.B. and Rokhlin V.A. Beginner’s Course in Topology. Springer, 1984.Google Scholar
  41. 41.
    Fuchs D.B. and Weldon L.L. Massey brackets and deformations. J. Pure and Appl. Alg., 156 (2001), 215–229.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Gabrielov A.M., Gelfand I.M., and Losik M.V. Combinatorial calculation of characteristic classes. Funct. Anal. Appl. 9 (1975), 103–116, 186–202.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Ginzburg V.L. On the number of pre-images of a point with respect to a continuous map. (Russian) Uspekhi Mat. Nauk, 41, no. 2, 197–189.Google Scholar
  44. 44.
    Hilton P. Suspension theorem and generalized Hopf invariant. Proc. London Math Soc., (3), 1 (1951), 462–493.Google Scholar
  45. 45.
    Hirsch M.W. Differential Topology. Springer, 1976.CrossRefzbMATHGoogle Scholar
  46. 46.
    Hirzebruch F. Topological Methods in Algebraic Geometry. Grundlehren Math. Wissenschaften, 131, Springer, 1978.Google Scholar
  47. 47.
    Hochschild G.P. and Serre J.-P. The cohomology of group extensions. Trans. Amer. Math. Soc., 74 (1949), 110–134.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Hochschild G.P. and Serre J.-P. Cohomology of Lie algebras. Ann. Math., 57 (1953), 591–603.MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Husemoller D.H. Fibre Bundles. Graduate Texts in Math., 20, Springer, 1994.Google Scholar
  50. 50.
    Kac V.G. Torsion of cohomology of compact Lie groups and Chow rings of reductive algebraic groups. Invent. Math., 80 (1985), 69–80.MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Karoubi M. K-Theory, an Introduction. Springer, 1978.zbMATHGoogle Scholar
  52. 52.
    Kirillov A.A. Elements of the Theory of Representations. Springer, 1976.CrossRefzbMATHGoogle Scholar
  53. 53.
    Leray J. Structure de l’anneau d’homologie de la représentation. C. R. Acad. Sci. Paris, 222 (1946), 1419–1422.MathSciNetzbMATHGoogle Scholar
  54. 54.
    Milnor J.W. Link Groups. Ann. Math., 59 (1954), 177–195.MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Milnor J.W. Construction of universal bundles II. Ann. Math., 63 (1956), 430–436.MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Milnor J.W. On spaces having the homotopy type of a CW-complex. Trans. Amer. Math Soc., 90 (1959), 272–280.MathSciNetzbMATHGoogle Scholar
  57. 57.
    Milnor J.W. Morse Theory. Princeton Univ. Press, 1963.CrossRefzbMATHGoogle Scholar
  58. 58.
    Milnor J.W. and Husemoller D.H. Symmetric Bilinear Forms. Ergebnisse Math. und Grenzgebiete, 73, Springer, 1973.Google Scholar
  59. 59.
    Milnor J.W. and Moore J.C. On the structure of Hopf algebras. Ann. Math., 81 (1965), 211–264.MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Milnor J.W. and Stasheff J.D. Characteristic Classes. Princeton Univ. Press, 1974.CrossRefzbMATHGoogle Scholar
  61. 61.
    Mishchenko A.S. Vector Bundles and Their Applications. Kluwer, 1968.Google Scholar
  62. 62.
    Mitchell W.J. Defining the boundary of a homology manifold. Proc. Amer. Math. Soc., 110 (1990), 509–513.MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Mosher R.E. and Tangora M.C. Cohomology Operations and Applications in Homotopy Theory. Harper&Row, 1968.Google Scholar
  64. 64.
    Munkres J.R. Elementary Differential Topology. Annals of Math Studies, 54, Princeton, 1966.Google Scholar
  65. 65.
    Novikov S.P. The methods of algebraic topology from the point of view of cobordism theories. Math. USSR—Izvestiya, 1 (1967), 827–913.Google Scholar
  66. 66.
    Palais R. Seminar on the Atiyah–Singer Index Theorem. Princeton Univ. Press, 1965.zbMATHGoogle Scholar
  67. 67.
    Pontryagin L.S. Über the topologische Struktur der Lieschen Gruppen. Comment. Math. Helv., 13/4 (1940/1941), 277–283.Google Scholar
  68. 68.
    Pontryagin L.S. Smooth manifolds and their applications in homotopy theory., Amer. Math. Soc. Translations, Ser. 2, 11 (1959), 1–114.MathSciNetzbMATHGoogle Scholar
  69. 69.
    Postnikov M.M. On a theorem of Cartan. Russian Math. Surveys, 21 (1966), 25–36.MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Quillen D. The Adams conjecture. Topology, 10 (1971), 67–80.MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Rokhlin V.A. Classification of mappings of an (n + 3)-dimensional sphere into an n-dimensional sphere. (Russian). Dokl. AN SSSR, 81 (1951), 19–22.Google Scholar
  72. 72.
    Rokhlin V.A. and Schwarz A.S. The combinatorial invariance of Pontryagin classes (Russian). Dokl. AN SSSR, 114 (1957), 490–493.Google Scholar
  73. 73.
    Schwartz J.T. Differential Geometry and Topology. Gordon and Breach, 1968.zbMATHGoogle Scholar
  74. 74.
    Segal G. Configuration spaces and iterated loop spaces. Invent. Math., 21 (1973), 213–221.MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Serre J.-P. Homologie singulière des espaces fibrés. Applications. Ann. Math., (2) 54 (1951), 425–505.Google Scholar
  76. 76.
    Serre J.-P. Groupes d’homotopie et classes de groupes abéliens. Ann. Math., 58 (1953), 258–294.CrossRefzbMATHGoogle Scholar
  77. 77.
    Serre J.-P. Cohomologie modulo 2 des complexes d’Eilenberg–MacLane. Comment. Math. Helv., 27 (1953), 198–232.MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Shokurov A.V. The relationships between the Chern numbers of quasicomplex manifolds. Math Notes, 26 (1979), 560–566.MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Spanier E.H. Algebraic Topology. Springer, 1966.zbMATHGoogle Scholar
  80. 80.
    Steenrod N.E. Products of cocycles and extension of mappings. Ann. Math., 48 (1947), 290–320.MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Steenrod N.E. The Topology of Fibre Bundles. Princeton Univ. Press, 1951.zbMATHGoogle Scholar
  82. 82.
    Stong R.E. Notes on Cobordism Theory. Princeton Univ. Press, 1968.zbMATHGoogle Scholar
  83. 83.
    Sullivan D. Geomeric Topology: Localization, Periodicity, and Galois Symmetry. The 1970 MIT Notes. Springer, 2005.Google Scholar
  84. 84.
    Thom R. Quelques propriétés globales des variétés différentiables. Comment. Math. Helv., 28 (1954), 17–86.MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Thom R. Les classes caracteristique de Pontryagin des variétés triangulées. Sympos. Intern. Topol. Algebr., Mexico City, 1958.zbMATHGoogle Scholar
  86. 86.
    Toda H. Composition Methods in Homotopy Groups of Spheres. Princeton Univ. Press, 1962.zbMATHGoogle Scholar
  87. 87.
    Turaev V.G. The Milnor invariants ans Massey products (Russian) Zap. Sem. LOMI, 66 (1976), 189–203; English translation: J. Soviet Mathematics, 12 (1979), 128–137.Google Scholar
  88. 88.
    Whitehead J.H.C. A generalization of the Hopf invariant. Ann. Math. (2), 51 (1950), 192–237.Google Scholar
  89. 89.
    Whitney H. Geometric Integration Theory. Dover, 1956.zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anatoly Fomenko
    • 1
  • Dmitry Fuchs
    • 2
  1. 1.Department of Mathematics and MechanicsMoscow State UniversityMoscowRussia
  2. 2.Department of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations