Advertisement

Towards Diet Management with Automatic Reasoning and Persuasive Natural Language Generation

  • Luca Anselma
  • Alessandro Mazzei
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9273)

Abstract

We devise a scenario where the interaction between man and food is mediated by an intelligent system that, on the basis of various factors, encourages or discourages the user to eat a specific dish. The main factors that the system need to account for are (1) the diet that the user intends to follow, (2) the food that s/he has eaten in the last days, and (3) the nutritional values of the dishes and their specific recipes. Automatic reasoning and Natural Language Generation (NLG) play a fundamental role in this project: the compatibility of a food with a diet is formalized as a Simple Temporal Problem (STP), while the NLG tries to motivate the user. In this paper we describe these two facilities and their interface.

Keywords

Diet management Automatic reasoning Natural language generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LARN - Livelli di Assunzione di Riferimento di Nutrienti ed energia per la popolazione italiana - IV Revisione. SICS Editore, Milan (2014)Google Scholar
  2. 2.
    Anselma, L., Terenziani, P., Montani, S., Bottrighi, A.: Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines. Artificial Intelligence in Medicine 38(2), 171–195 (2006)CrossRefGoogle Scholar
  3. 3.
    Balintfy, J.L.: Menu planning by computer. Commun. ACM 7(4), 255–259 (1964)CrossRefGoogle Scholar
  4. 4.
    Barzilay, R., Mccullough, D., Rambow, O., Decristofaro, J., Korelsky, T., Lavoie, B. Inc, C.: A new approach to expert system explanations. In: 9th International Workshop on Natural Language Generation, pp. 78–87 (1998)Google Scholar
  5. 5.
    Bas, E.: A robust optimization approach to diet problem with overall glycemic load as objective function. Applied Mathematical Modelling 38(19–20), 4926–4940 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Buisson, J.C.: Nutri-educ, a nutrition software application for balancing meals, using fuzzy arithmetic and heuristic search algorithms. Artif. Intell. Med. 42(3), 213–227 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cialdini, R.B.: Influence: science and practice. Pearson Education, Boston (2009)Google Scholar
  8. 8.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1–3), 61–95 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Derks, D., Bos, A.E.R., von Grumbkow, J.: Emoticons in computer-mediated communication: Social motives and social context. Cyberpsy., Behavior, and Soc. Networking 11(1), 99–101 (2008)CrossRefGoogle Scholar
  10. 10.
    Fogg, B.: Persuasive Technology: Using computers to change what we think and do. Morgan Kaufmann Publishers, Elsevier, San Francisco (2002)Google Scholar
  11. 11.
  12. 12.
    Guerini, M., Stock, O., Zancanaro, M.: A taxonomy of strategies for multimodal persuasive message generation. Applied Artificial Intelligence 21(2), 99–136 (2007)CrossRefGoogle Scholar
  13. 13.
    Holzinger, A., Dorner, S., Födinger, M., Valdez, A.C., Ziefle, M.: Chances of increasing youth health awareness through mobile wellness applications. In: Leitner, G., Hitz, M., Holzinger, A. (eds.) USAB 2010. LNCS, vol. 6389, pp. 71–81. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Hovy, E.H.: Generating Natural Language Under Pragmatic Constraints. Lawrence Erlbaum, Hillsdale (1988) Google Scholar
  15. 15.
    Iizuka, K., Okawada, T., Matsuyama, K., Kurihashi, S., Iizuka, Y.: Food menu selection support system: considering constraint conditions for safe dietary life. In: Proceedings of the ACM Multimedia 2012 Workshop on Multimedia for Cooking and Eating Activities, CEA 2012, pp. 53–58. ACM, New York (2012)Google Scholar
  16. 16.
    Kaptein, M., de Ruyter, B.E.R., Markopoulos, P., Aarts, E.H.L.: Adaptive persuasive systems: A study of tailored persuasive text messages to reduce snacking. TiiS 2(2), 10 (2012)CrossRefGoogle Scholar
  17. 17.
    Lacave, C., Diez, F.J.: A review of explanation methods for heuristic expert systems. Knowl. Eng. Rev. 19(2), 133–146 (2004)CrossRefGoogle Scholar
  18. 18.
    Lancaster, L.M.: The history of the application of mathematical programming to menu planning. European Journal of Operational Research 57(3), 339–347 (1992)CrossRefzbMATHGoogle Scholar
  19. 19.
    Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Information Sciences 7, 95–132 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nishida, C., Uauy, R., Kumanyika, S., Shetty, P.: The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutrition 7, 245–250 (2004)Google Scholar
  21. 21.
    Reiter, E., Robertson, R., Osman, L.: Lessons from a Failure: Generating Tailored Smoking Cessation Letters. Artificial Intelligence 144, 41–58 (2003)CrossRefGoogle Scholar
  22. 22.
    Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University Press, New York (2000) CrossRefGoogle Scholar
  23. 23.
    de Rosis, F., Grasso, F.: Affective natural language generation. In: Paiva, A. (ed.) Affective Interactions. LNCS, vol. 1814, pp. 204–218. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  24. 24.
    Schofield, W.N.: Predicting basal metabolic rate, new standards and review of previous work. Human Nutrition: Clinical Nutrition 39C, 5–41 (1985)Google Scholar
  25. 25.
    Terenziani, P., Anselma, L.: A knowledge server for reasoning about temporal constraints between classes and instances of events. International Journal of Intelligent Systems 19(10), 919–947 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    World Health Organization: Global strategy on diet, physical activity and health (WHA57.17). In: 75th World Health Assembly (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di TorinoTurinItaly

Personalised recommendations