Portuguese Conference on Artificial Intelligence

EPIA 2015: Progress in Artificial Intelligence pp 54-66 | Cite as

Smart Environments and Context-Awareness for Lifestyle Management in a Healthy Active Ageing Framework

  • Davide Bacciu
  • Stefano Chessa
  • Claudio Gallicchio
  • Alessio Micheli
  • Erina Ferro
  • Luigi Fortunati
  • Filippo Palumbo
  • Oberdan Parodi
  • Federico Vozzi
  • Sten Hanke
  • Johannes Kropf
  • Karl Kreiner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9273)

Abstract

Health trends of elderly in Europe motivate the need for technological solutions aimed at preventing the main causes of morbidity and premature mortality. In this framework, the DOREMI project addresses three important causes of morbidity and mortality in the elderly by devising an ICT-based home care services for aging people to contrast cognitive decline, sedentariness and unhealthy dietary habits. In this paper, we present the general architecture of DOREMI, focusing on its aspects of human activity recognition and reasoning.

Keywords

Human activity recognition E-health Reasoning Smart environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tukey, J.W.: Exploratory data analysis, pp. 2–3 (1977)Google Scholar
  2. 2.
    Long, X., Yin, B., Aarts, R.M.: Single-accelerometer-based daily physical activity classification. In: Engineering in Medicine and Biology Society, EMBC 2009. Annual International Conference of the IEEE. IEEE (2009)Google Scholar
  3. 3.
    Fernández-Llatas, C., et al.: Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors 13(11), 15434–15451 (2013)CrossRefGoogle Scholar
  4. 4.
    der Aalst, V., Wil, M.P., et al.: Workflow mining: A survey of issues and approaches. Data & Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  5. 5.
    Yang, C.-H., Liu, Y.-T., Chuang, L.-Y.: DNA motif discovery based on ant colony optimization and expectation maximization. In: Proceedings of the International Multi Conference of Engineers and Computer Scientists, vol. 1 (2011)Google Scholar
  6. 6.
    Bouamama, S., Boukerram, A., Al-Badarneh, A.F.: Motif finding using ant colony optimization. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 464–471. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Cui, X., et al.: Visual mining intrusion behaviors by using swarm technology. In: 2011 44th Hawaii International Conference on System Sciences (HICSS). IEEE (2011)Google Scholar
  8. 8.
    Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. Communications Surveys & Tutorials, IEEE 15(3), 1192–1209 (2013)CrossRefGoogle Scholar
  10. 10.
    Kolen, J., Kremer, S. (eds.): A Field Guide to Dynamical Recurrent Networks. IEEE Press (2001)Google Scholar
  11. 11.
    Lukoševicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)CrossRefMATHGoogle Scholar
  12. 12.
    Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)CrossRefGoogle Scholar
  13. 13.
    Gallicchio, C., Micheli, A.: Architectural and markovian factors of echo state networks. Neural Networks 24(5), 440–456 (2011)CrossRefGoogle Scholar
  14. 14.
    Tino, P., Hammer, B., Boden, M.: Markovian bias of neural based architectures with feedback connections. In: Hammer, B., Hitzler, P. (eds.) Perspectives of neural-symbolic integration. SCI, vol. 77, pp. 95–133. Springer-Verlag, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lukoševičius, M., Jaeger, H., Schrauwen, B.: Reservoir Computing Trends. KI - Künstliche Intelligenz 26(4), 365–371 (2012)CrossRefGoogle Scholar
  16. 16.
    Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., Micheli, A.: An experimental characterization of reservoir computing in ambient assisted living applications. Neural Computing and Applications 24(6), 1451–1464 (2014)CrossRefGoogle Scholar
  17. 17.
    Chessa, S., et al.: Robot localization by echo state networks using RSS. In: Recent Advances of Neural Network Models and Applications. Smart Innovation, Systems and Technologies, vol. 26, pp. 147–154. Springer (2014)Google Scholar
  18. 18.
    Palumbo, F., Barsocchi, P., Gallicchio, C., Chessa, S., Micheli, A.: Multisensor data fusion for activity recognition based on reservoir computing. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 24–35. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Bacciu, D., Gallicchio, C., Micheli, A., Di Rocco, M., Saffiotti, A.: Learning context-aware mobile robot navigation in home environments. In: 5th IEEE Int. Conf. on Information, Intelligence, Systems and Applications (IISA) (2014)Google Scholar
  20. 20.
    Amato, G., Broxvall, M., Chessa, S., Dragone, M., Gennaro, C., López, R., Maguire, L., Mcginnity, T., Micheli, A., Renteria, A., O’Hare, G., Pecora, F.: Robotic UBIquitous COgnitive network. In: Novais, P., Hallenborg, K., Tapia, D.I., Rodrìguez, J.M. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 153, pp. 191–195. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Lavrac, N., et al.: Intelligent data analysis in medicine. IJCAI 97, 1–13 (1997)MathSciNetGoogle Scholar
  22. 22.
    Chae, Y.M.: Expert Systems in Medicine. In: Liebowitz, J. (ed.) The Handbook of applied expert systems, pp. 32.1–32.20. CRC Press (1998)Google Scholar
  23. 23.
    Gurgen, F.: Neuronal-Network-based decision making in diagnostic applications. IEEE EMB Magazine 18(4), 89–93 (1999)Google Scholar
  24. 24.
    Anderson, J.R., Machine learning: An artificial intelligence approach. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) vol. 2. Morgan Kaufmann (1986)Google Scholar
  25. 25.
    Hastie, T., et al.: The elements of statistical learning, vol. 2(1). Springer (2009)Google Scholar
  26. 26.
    Murphy, K.P.: Machine learning: a probabilistic perspective. MIT Press (2012)Google Scholar
  27. 27.
    Carvalho, D.R., Freitas, A.A.: A hybrid decision tree/genetic algorithm method for data mining. Information Sciences 163(1), 13–35 (2004). [EDA1] Tukey, J.W.: Exploratory data analysis, pp. 2–3 (1977)CrossRefGoogle Scholar
  28. 28.
    Fuxreiter, T., et al.: A modular plat- form for event recognition in smart homes. In: 12th IEEE Int. Conf. on e-Health Networking Applications and Services (Healthcom), pp. 1–6 (2010)Google Scholar
  29. 29.
    Kreiner, K., et al.: Play up! A smart knowledge-based system using games for preventing falls in elderly people. Health Informatics meets eHealth (eHealth 2013). In: Proceedings of the eHealth 2013, OCG, Vienna, pp. 243–248 (2013). ISBN: 978-3-85403-293-9Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Davide Bacciu
    • 1
  • Stefano Chessa
    • 1
    • 2
  • Claudio Gallicchio
    • 1
  • Alessio Micheli
    • 1
  • Erina Ferro
    • 2
  • Luigi Fortunati
    • 2
  • Filippo Palumbo
    • 2
  • Oberdan Parodi
    • 2
  • Federico Vozzi
    • 2
  • Sten Hanke
    • 3
  • Johannes Kropf
    • 3
  • Karl Kreiner
    • 4
  1. 1.Department of Computer ScienceUniversity of PisaPisaItaly
  2. 2.CNR-ISTI, PISA CNR Research AreaPisaItaly
  3. 3.Health and Environment DepartmentAIT Austrian Institute of Technology GmbHViennaAustria
  4. 4.Safety and Security DepartmentAIT Austrian Institute of Technology GmbHViennaAustria

Personalised recommendations