A New Approach for Dynamic Strategic Positioning in RoboCup Middle-Size League

  • António J. R. NevesEmail author
  • Filipe Amaral
  • Ricardo Dias
  • João Silva
  • Nuno  Lau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9273)


Coordination in multi-robot or multi-agent systems has been receiving special attention in the last years and has a prominent role in the field of robotics. In the robotic soccer domain, the way that each team coordinates its robots, individually and together, in order to perform cooperative tasks is the base of its strategy and in large part dictates the success of the team in the game. In this paper we propose the use of Utility Maps to improve the strategic positioning of a robotic soccer team. Utility Maps are designed for different set pieces situations, making them more dynamic and easily adaptable to the different strategies used by the opponent teams. Our approach has been tested and successfully integrated in normal game situations to perform passes in free-play, allowing the robots to choose, in real-time, the best position to receive and pass the ball. The experimental results obtained, as well as the analysis of the team performance during the last RoboCup competition show that the use of Utility Maps increases the efficiency of the team strategy.


Multiagent System Delaunay Triangulation Ball Position Soccer Game Game Situation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neves, A., Azevedo, J., Lau, N., Cunha, B., Silva, J., Santos, F., Corrente, G., Martins, D.A., Figueiredo, N., Pereira, A., Almeida, L., Lopes, L.S., Pedreiras, P.: CAMBADA soccer team: from robot architecture to multiagent coordination, chapter 2, pp. 19–45. I-Tech Education and Publishing, Vienna, January 2010Google Scholar
  2. 2.
    Veloso, M., Bowling, M., Achim, S., Han, K., Stone, P.: The cmunited-98 champion small robot team (accessed February 27, 2014)Google Scholar
  3. 3.
    Stone, P.: Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer. MIT Press (2000)Google Scholar
  4. 4.
    Reis, L.P., Lau, N., Oliveira, E.C.: Situation based strategic positioning for coordinating a team of homogeneous agents. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.) ECAI-WS 2000. LNCS (LNAI), vol. 2103, pp. 175–197. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  5. 5.
    Lau, N., Lopes, L.S., Corrente, G.: CAMBADA: information sharing and team coordination. In: Proc. of the 8th Conference on Autonomous Robot Systems and Competitions, Portuguese Robotics Open - ROBOTICA 2008, pp. 27–32, Aveiro, Portugal, April 2008Google Scholar
  6. 6.
    Dashti, H.A.T., Aghaeepour, N., Asadi, S., Bastani, M., Delafkar, Z., Disfani, F.M., Ghaderi, S.M., Kamali, S.: Dynamic positioning based on voronoi cells (DPVC). In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 219–229. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  7. 7.
    Akiyama, H., Noda, I.: Multi-agent positioning mechanism in the dynamic environment. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007: Robot Soccer World Cup XI. LNCS (LNAI), vol. 5001, pp. 377–384. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  9. 9.
    Rosenblatt, J.K.: Utility fusion: map-based planning in a behavior-based system. In: Zelinsky, A. (ed.) Field and Service Robotics, pp. 411–418. Springer, London (1998)Google Scholar
  10. 10.
    Chaimowicz, L., Kumar, V.: Mario Fernando Montenegro Campos. A paradigm for dynamic coordination of multiple robots. Auton. Robots 17(1), 7–21 (2004)CrossRefGoogle Scholar
  11. 11.
    Spaan, M.T.J., Groen, F.C.A.: Team coordination among robotic soccer players. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 409–416. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  12. 12.
    Santos, F., Almeida, L., Lopes, L.S., Azevedo, J.L., Cunha, M.B.: Communicating among robots in the robocup middle-size league. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 320–331. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  13. 13.
    Lau, N., Lopes, L.S., Corrente, G., Filipe, N., Sequeira, R.: Robot team coordination using dynamic role and positioning assignment and role based setplays. Mechatronics 21(2), 445–454 (2011)CrossRefGoogle Scholar
  14. 14.
    Trifan, A., Neves, A.J.R., Cunha, B., Azevedo, J.L.: UAVision: a modular time-constrained vision library for soccer robots. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS, vol. 8992, pp. 490–501. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  15. 15.
    Silva, J., Lau, N., António, J.R., Neves, A.J., Azevedo, J.L.: World modeling on an MSL robotic soccer team. Mechatronics 21(2), 411–422 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • António J. R. Neves
    • 1
    Email author
  • Filipe Amaral
    • 1
  • Ricardo Dias
    • 1
  • João Silva
    • 1
  • Nuno  Lau
    • 1
  1. 1.Intelligent Robotics and Intelligent Systems LabIEETA/DETI – University of AveiroAveiroPortugal

Personalised recommendations