Surgical Treatment of Long-Bone Deformities: 3D Preoperative Planning and Patient-Specific Instrumentation

  • Philipp Fürnstahl
  • Andreas Schweizer
  • Matthias Graf
  • Lazaros Vlachopoulos
  • Sandro Fucentese
  • Stephan Wirth
  • Ladislav Nagy
  • Gabor Szekely
  • Orcun Goksel
Chapter
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 23)

Abstract

Congenital or posttraumatic bone deformity may lead to reduced range of motion, joint instability, pain, and osteoarthritis. The conventional joint-preserving therapy for such deformities is corrective osteotomy—the anatomical reduction or realignment of bones with fixation. In this procedure, the bone is cut and its fragments are correctly realigned and stabilized with an implant to secure their position during bone healing. Corrective osteotomy is an elective procedure scheduled in advance, providing sufficient time for careful diagnosis and operation planning. Accordingly, computer-based methods have become very popular for its preoperative planning. These methods can improve precision not only by enabling the surgeon to quantify deformities and to simulate the intervention preoperatively in three dimensions, but also by generating a surgical plan of the required correction. However, generation of complex surgical plans is still a major challenge, requiring sophisticated techniques and profound clinical expertise. In addition to preoperative planning, computer-based approaches can also be used to support surgeons during the course of interventions. In particular, since recent advances in additive manufacturing technology have enabled cost-effective production of patient- and intervention-specific osteotomy instruments, customized interventions can thus be planned for and performed using such instruments. In this chapter, state of the art and future perspectives of computer-assisted deformity-correction surgery of the upper and lower extremities are presented. We elaborate on the benefits and pitfalls of different approaches based on our own experience in treating over 150 patients with three-dimensional preoperative planning and patient-specific instrumentation.

Keywords

Additive Manufacturing Iterative Close Point Goal Model Wedge Osteotomy Closing Wedge Osteotomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cambron J, King T (2006) The bone and joint decade: 2000 to 2010. J Manipulative Physiol Ther 29(2):91–92CrossRefGoogle Scholar
  2. 2.
    Brooks PM (2006) The burden of musculoskeletal disease—a global perspective. Clin Rheumatol 25(6):778–781MathSciNetCrossRefGoogle Scholar
  3. 3.
    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81(9):646–656Google Scholar
  4. 4.
    Wade RH, New AM, Tselentakis G, Kuiper JH, Roberts A, Richardson JB (1999) Malunion in the lower limb. A nomogram to predict the effects of osteotomy. J Bone Joint Surg Br 81(2):312–316CrossRefGoogle Scholar
  5. 5.
    Honkonen SE (1995) Degenerative arthritis after tibial plateau fractures. J Orthop Trauma 9(4):273–277CrossRefGoogle Scholar
  6. 6.
    Nagy L, Jankauskas L, Dumont CE (2008) Correction of forearm malunion guided by the preoperative complaint. Clin Orthop Relat Res 466(6):1419–1428CrossRefGoogle Scholar
  7. 7.
    Jayakumar P, Jupiter JB (2014) Reconstruction of malunited diaphyseal fractures of the forearm. Hand 9(3):265–273CrossRefGoogle Scholar
  8. 8.
    Lustig S, Khiami F, Boyer P, Catonne Y, Deschamps G, Massin P (2010) Post-traumatic knee osteoarthritis treated by osteotomy only. Orthop Traumatol Surg Res 96(8):856–860CrossRefGoogle Scholar
  9. 9.
    Espinosa N (2012) Total ankle replacement. Preface. Foot Ankle Clin 17(4):xiii-xivGoogle Scholar
  10. 10.
    Parratte S, Boyer P, Piriou P, Argenson JN, Deschamps G, Massin P (2011) Total knee replacement following intra-articular malunion. Orthop Traumatol Surg Res 97(6 Suppl):S118–S123CrossRefGoogle Scholar
  11. 11.
    Schweizer A, Fürnstahl P, Nagy L (2013) Three-dimensional correction of distal radius intra-articular malunions using patient-specific drill guides. J Hand Surg Am 38(12):2339–2347CrossRefGoogle Scholar
  12. 12.
    Mast J, Teitge R, Gowda M (1990) Preoperative planning for the treatment of nonunions and the correction of malunions of the long bones. Orthop Clin North Am 21(4):693–714Google Scholar
  13. 13.
    Paley D (2002) Principles of deformity correction. Springer, Berlin. ISBN:354041665XGoogle Scholar
  14. 14.
    Marti RK, Heerwaarden RJ, Arbeitsgemeinschaft für Osteosynthesefragen (2008) Osteotomies for posttraumatic deformities: Thieme Stuttgart. ISBN:3131486716Google Scholar
  15. 15.
    Fernandez DL (1982) Correction of post-traumatic wrist deformity in adults by osteotomy, bone-grafting, and internal fixation. J Bone Joint Surg Am 64(8):1164–1178Google Scholar
  16. 16.
    Paley D (2011) Intra-articular osteotomies of the hip, knee, and ankle. Oper Tech Orthop 21(2):184–196MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ring D, Prommersberger KJ, Gonzalez del Pino J, Capomassi M, Slullitel M, Jupiter JB (2005) Corrective osteotomy for intra-articular malunion of the distal part of the radius. J Bone Joint Surg Am 87(7):1503–1509CrossRefGoogle Scholar
  18. 18.
    Schweizer A, Fürnstahl P, Harders M, Szekely G, Nagy L (2010) Complex radius shaft malunion: osteotomy with computer-assisted planning. Hand 5(2):171–178CrossRefGoogle Scholar
  19. 19.
    Bilic R, Zdravkovic V, Boljevic Z (1994) Osteotomy for deformity of the radius. Computer-assisted three-dimensional modelling. J Bone Joint Surg Br 76(1):150–154Google Scholar
  20. 20.
    Zdravkovic V, Bilic R (1990) Computer-assisted preoperative planning (CAPP) in orthopaedic surgery. Comput Methods Programs Biomed 32(2):141–146CrossRefGoogle Scholar
  21. 21.
    Langlotz F, Bachler R, Berlemann U, Nolte LP, Ganz R (1998) Computer assistance for pelvic osteotomies. Clin Orthop Relat Res 354:92–102CrossRefGoogle Scholar
  22. 22.
    Jaramaz B, Hafez MA, DiGioia AM (2006) Computer-assisted orthopaedic surgery. Proc IEEE 94(9):1689–1695CrossRefGoogle Scholar
  23. 23.
    Athwal GS, Ellis RE, Small CF, Pichora DR (2003) Computer-assisted distal radius osteotomy. J Hand Surg Am 28(6):951–958CrossRefGoogle Scholar
  24. 24.
    Wang G, Zheng G, Gruetzner PA, Mueller-Alsbach U, von Recum J, Staubli A et al (2005) A fluoroscopy-based surgical navigation system for high tibial osteotomy. Technol Health Care 13(6):469–483Google Scholar
  25. 25.
    Hufner T, Kendoff D, Citak M, Geerling J, Krettek C (2006) Precision in orthopaedic computer navigation. Orthopade 35(10):1043–1055CrossRefGoogle Scholar
  26. 26.
    Sarment DP, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 18(4):571–577Google Scholar
  27. 27.
    Ma B, Kunz M, Gammon B, Ellis RE, Pichora DR (2014) A laboratory comparison of computer navigation and individualized guides for distal radius osteotomy. Int J Comput Assist Radiol Surg 9(4):713–724CrossRefGoogle Scholar
  28. 28.
    Kunz M, Ma B, Rudan JF, Ellis RE, Pichora DR (2013) Image-guided distal radius osteotomy using patient-specific instrument guides. J Hand Surg Am. 38(8):1618–1624CrossRefGoogle Scholar
  29. 29.
    Miyake J, Murase T, Moritomo H, Sugamoto K, Yoshikawa H (2011) Distal radius osteotomy with volar locking plates based on computer simulation. Clin Orthop Relat Res 469(6):1766–1773CrossRefGoogle Scholar
  30. 30.
    Miyake J, Murase T, Oka K, Moritomo H, Sugamoto K, Yoshikawa H (2012) Computer-assisted corrective osteotomy for malunited diaphyseal forearm fractures. J Bone Joint Surg Am 94(20):e150CrossRefGoogle Scholar
  31. 31.
    Murase T, Oka K, Moritomo H, Goto A, Yoshikawa H, Sugamoto K (2008) Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Joint Surg Am 90(11):2375–2389CrossRefGoogle Scholar
  32. 32.
    Schweizer A, Fürnstahl P, Nagy L (2014) Three-dimensional planing and correction of osteotomies in the forearm and the hand. Ther Umsch 71(7):391–396CrossRefGoogle Scholar
  33. 33.
    Tricot M, Duy KT, Docquier PL (2012) 3D-corrective osteotomy using surgical guides for posttraumatic distal humeral deformity. Acta Orthop Belg 78(4):538–542Google Scholar
  34. 34.
    Victor J, Premanathan A (2013) Virtual 3D planning and patient specific surgical guides for osteotomies around the knee: a feasibility and proof-of-concept study. Bone Joint J 95-B(11 Suppl A):153–158Google Scholar
  35. 35.
    Koch PP, Muller D, Pisan M, Fucentese SF (2013) Radiographic accuracy in TKA with a CT-based patient-specific cutting block technique. Knee Surg Sports Traumatol Arthrosc 21(10):2200–2205CrossRefGoogle Scholar
  36. 36.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: ACM SIGGRAPH computer graphics, ACM. ISBN:0897912276Google Scholar
  37. 37.
    Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput 10(3):145–155CrossRefGoogle Scholar
  38. 38.
    Mount DM, Arya S (1998) ANN: library for approximate nearest neighbour searchingGoogle Scholar
  39. 39.
    Dumont CE, Pfirrmann CW, Ziegler D, Nagy L (2006) Assessment of radial and ulnar torsion profiles with cross-sectional magnetic resonance imaging. A study of volunteers. J Bone Joint Surg Am 88(7):1582–1588CrossRefGoogle Scholar
  40. 40.
    Matsumura N, Ogawa K, Kobayashi S, Oki S, Watanabe A, Ikegami H et al (2014) Morphologic features of humeral head and glenoid version in the normal glenohumeral joint. J Shoulder Elbow Surg 23(11):1724–1730CrossRefGoogle Scholar
  41. 41.
    Vroemen JC, Dobbe JG, Jonges R, Strackee SD, Streekstra GJ (2012) Three-dimensional assessment of bilateral symmetry of the radius and ulna for planning corrective surgeries. J Hand Surg Am 37(5):982–988CrossRefGoogle Scholar
  42. 42.
    Horn BK (1987) Closed-form solution of absolute orientation using unit quaternions. JOSA A 4(4):629–642MathSciNetCrossRefGoogle Scholar
  43. 43.
    Meyer DC, Siebenrock KA, Schiele B, Gerber C (2005) A new methodology for the planning of single-cut corrective osteotomies of mal-aligned long bones. Clin Biomech (Bristol, Avon) 20(2):223–227Google Scholar
  44. 44.
    Miniaci A, Ballmer F, Ballmer P, Jakob R (1989) Proximal tibial osteotomy: a new fixation device. Clin Orthop Relat Res 246:250–259Google Scholar
  45. 45.
    FuJISAwA Y, Masuhara K, Shiomi S (1979) The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints. Orthop Clin North Am 10(3):585–608Google Scholar
  46. 46.
    Schneider P, Eberly DH (2002) Geometric tools for computer graphics. Morgan Kaufmann, Burlington ISBN:0080478026Google Scholar
  47. 47.
    Moreland J, Bassett L, Hanker G (1987) Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am 69(5):745–749Google Scholar
  48. 48.
    Fabri A, Pion S (2009) CGAL: the computational geometry algorithms library. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, ACM. ISBN:1605586498Google Scholar
  49. 49.
    Schemitsch EH, Richards RR (1992) The effect of malunion on functional outcome after plate fixation of fractures of both bones of the forearm in adults. J Bone Joint Surg Am 74(7):1068–1078Google Scholar
  50. 50.
    Kendoff D, Lo D, Goleski P, Warkentine B, O’Loughlin PF, Pearle AD (2008) Open wedge tibial osteotomies influence on axial rotation and tibial slope. Knee Surg Sports Traumatol Arthrosc 16(10):904–910CrossRefGoogle Scholar
  51. 51.
    Oka K, Murase T, Moritomo H, Goto A, Nakao R, Sugamoto K et al (2011) Accuracy of corrective osteotomy using a custom-designed device based on a novel computer simulation system. J Orthop Sci 16(1):85–92CrossRefGoogle Scholar
  52. 52.
    Takeyasu Y, Oka K, Miyake J, Kataoka T, Moritomo H, Murase T (2013) Preoperative, computer simulation-based, three-dimensional corrective osteotomy for cubitus varus deformity with use of a custom-designed surgical device. J Bone Joint Surg Am 95(22):e173CrossRefGoogle Scholar
  53. 53.
    Fürnstahl P, Schweizer A, Nagy L, Szekely G, Harders M (2009) A morphological approach to the simulation of forearm motion. In: Conference proceedings of IEEE engineering medicine biology society, pp 7168–71Google Scholar
  54. 54.
    Oka K, Murase T, Moritomo H, Goto A, Sugamoto K, Yoshikawa H (2009) Accuracy analysis of three-dimensional bone surface models of the forearm constructed from multidetector computed tomography data. Int J Med Robot 5(4):452–457CrossRefGoogle Scholar
  55. 55.
    Omori S, Murase T, Kataoka T, Kawanishi Y, Oura K, Miyake J et al (2014) Three-dimensional corrective osteotomy using a patient-specific osteotomy guide and bone plate based on a computer simulation system: accuracy analysis in a cadaver study. Int J Med Robot 10(2):196–202CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Philipp Fürnstahl
    • 1
  • Andreas Schweizer
    • 1
    • 2
  • Matthias Graf
    • 1
  • Lazaros Vlachopoulos
    • 1
  • Sandro Fucentese
    • 2
  • Stephan Wirth
    • 2
  • Ladislav Nagy
    • 2
  • Gabor Szekely
    • 3
  • Orcun Goksel
    • 3
  1. 1.Computer Assisted Research and Development GroupUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
  2. 2.Department of Orthopedic SurgeryUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
  3. 3.Computer Vision LaboratoryETH ZurichZurichSwitzerland

Personalised recommendations