Advertisement

Hecke algebras with unequal parameters and Vogan’s left cell invariants

  • Cédric Bonnafé
  • Meinolf GeckEmail author
Chapter
Part of the Progress in Mathematics book series (PM, volume 312)

Abstract

In 1979, Vogan introduced a generalised τ-invariant for characterising primitive ideals in enveloping algebras. Via a known dictionary this translates to an invariant of left cells in the sense of Kazhdan and Lusztig. Although it is not a complete invariant, it is extremely useful in describing left cells. Here, we propose a general framework for defining such invariants which also applies to Hecke algebras with unequal parameters.

Key words

Coxeter groups Hecke algebras Kazhdan–Lusztig cells 

MSC (2010):

Primary 20C08 Secondary 20F55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The first author is partly supported by the ANR (Project No. ANR-12-JS01-0003-01 ACORT). The second author is partly supported by DFG Priority Programme SPP 1489.

References

  1. 1.
    D. Barbasch and D. A. Vogan, Jr., Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), 350–382.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Bonnafé, Two-sided cells in type B (asymptotic case), J. Algebra 304, 216–236 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    C. Bonnafé, Semicontinuity properties of Kazhdan-Lusztig cells, New Zealand J. Math. 39 (2009), 171–192.MathSciNetzbMATHGoogle Scholar
  4. 4.
    C. Bonnafé, On Kazhdan-Lusztig cells in type B, Journal of Alg. Comb. 31 (2010), 53–82.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    C. Bonnafé and L. Iancu, Left cells in type B n with unequal parameters, Represent. Theory 7 (2003), 587–609.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B. Elias and G. Williamson, The Hodge theory of Soergel bimodules, Annals of Math. 180 (2014), 1089–1136.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras I, Compositio Math., 75 (1990), 135–169.MathSciNetzbMATHGoogle Scholar
  8. 8.
    D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras III, Compositio Math. 88 (1993), 187–234.MathSciNetzbMATHGoogle Scholar
  9. 9.
    M. Geck, On the induction of Kazhdan–Lusztig cells, Bull. London Math. Soc. 35 (2003), 608–614.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Geck, Relative Kazhdan–Lusztig cells, Represent. Theory 10 (2006), 481–524.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Geck, PyCox: Computing with (finite) Coxeter groups and Iwahori–Hecke algebras. Dedicated to the Memory of Prof. H. Pahlings. LMS J. of Comput. and Math. 15 (2012), 231–256. (Programs available at url{http://www.mathematik.uni-stuttgart.de/$nsim$geckmf.)
  12. 12.
    M. Geck and A. Halls, On the Kazhdan–Lusztig cells in type E 8, Math. Comp. 84 (2015), 3029–3049.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Mathematical Society Monographs. New Series, 21. The Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
  14. 14.
    J. Guilhot, On the lowest two-sided cell in affine Weyl groups, Represent. Theory 12 (2008), 327–345.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Joseph, On the classification of primitive ideals in the enveloping algebra of a semisimple Lie algebra, in Lie Group Representations, I (eds R. L. R. Herb and J. Rosenberg), Lecture Notes in Mathematics, Vol. 1024 (Springer, Berlin, 1983), pp. 30–76.Google Scholar
  16. 16.
    D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    G. Lusztig, Left cells in Weyl groups, in Lie Group Representations, I (eds R. L. R. Herb and J. Rosenberg), Lecture Notes in Mathematics, Vol. 1024 (Springer, Berlin, 1983), pp. 99–111.Google Scholar
  18. 18.
    G. Lusztig, Cells in affine Weyl groups, Advanced Studies in Pure Math. 6, Algebraic groups and related topics, Kinokuniya and North–Holland, 1985, 255–287.Google Scholar
  19. 19.
    G. Lusztig, Intersection cohomology methods in representation theory, in Proceedings of the ICM, Kyoto, Japan, 1990, Springer–Verlag, Berlin–New York, 1991, pp. 155–174.Google Scholar
  20. 20.
    G. Lusztig, Hecke algebras with unequal parameters. CRM Monograph Series 18, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  21. 21.
    W. M. McGovern, Left cells and domino tableaux in classical Weyl groups, Compositio. Math. 101 (1996), 77–98.MathSciNetzbMATHGoogle Scholar
  22. 22.
    J. Shi, Left cells in the affine Weyl groups, Tôhoku J. Math. 46 (1994), 105–124.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. Shi, The Laurent polynomials M y,w s in the Hecke algebra with unequal parameters, J. Algebra 357 (2012), 1–19.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    D. A. Vogan, Jr., A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann. 242 (1979), 209–224.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    D. A. Vogan, Jr., Ordering of the primitive spectrum of a semisimple Lie algebra, Math. Ann. 248 (1980), 195–203.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut de Mathématiques et de Modélisation de Montpellier (CNRS: UMR 5149)Université Montpellier 2, Case Courrier 051Montpellier CedexFrance
  2. 2.Fachbereich Mathematik, IAZ - Lehrstuhl für AlgebraUniversität StuttgartStuttgartGermany

Personalised recommendations