Influence of Introduction of Mitosis-Like Processes into Mathematical-Simulation Model of Protocells in RNA World

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 391)

Abstract

In this article influence of operation of mitosis–like mechanisms, on hybrid simulation–mathematical model of protocells development in RNA world, was presented. Introduced processes are responsible for even distribution of genetic material, between progeny formations, during protocells division phase. Obtained results point out that such mechanisms might improve abilities of genetic information storage by population of protocells, thus they can support process of life emergence, however high fidelity of genes replication is required. Therefore, emergence of genes assortment process should follow improvement of RNA replicase abilities in the area of speed and replication reliability.

Keywords

Branching processes RNA world Monte Carlo simulations 

References

  1. 1.
    Benner, S.A., Kim, H.J., Yang, Z.: Setting the stage: the history, chemistry, and geobiology behind RNA. Cold Spring Harb. Perspect. Biol. 4(1), a003541 (2010)Google Scholar
  2. 2.
    de Boer, F.K., Hogeweg, P.: Mutation rates and evolution of multiple coding in RNA-based protocells. J. Mol. Evol. 79(5–6), 193–203 (2014)CrossRefGoogle Scholar
  3. 3.
    Bresch, C., Niesert, U., Harnasch, D.: Hypercycles, parasites and packages. J. Theor. Biol. 85(3), 399–405 (1980)CrossRefGoogle Scholar
  4. 4.
    Cheng, L.K.L., Unrau, P.J.: Closing the circle: replicating RNA with RNA. Cold Spring Harb. Perspect. Biol. 2(10), a002204 (2010)CrossRefGoogle Scholar
  5. 5.
    Cyran, K.A.: Complexity threshold in RNA-world: computational modeling of criticality in galton-watson process. In: ACS 2008. pp. 290–295. Venice, Italy (2008)Google Scholar
  6. 6.
    Cyran, K.A., Kimmel, M.: Distribution of the coalescence time of a pair of alleles for stochastic population trajectories: comparison of fisher-wright and o’connell models. Am. J. Hum. Genet. 73(5), 619–619 (2003)Google Scholar
  7. 7.
    Cyran, K.A., Kimmel, M.: Interactions of Neanderthals and modern humans: what can be inferred from mitochondrial DNA? Math. Biosci. Eng. 2(3), 487–498 (2005)MATHCrossRefGoogle Scholar
  8. 8.
    Cyran, K.A., Kimmel, M.: Alternatives to the wright-fisher model: the robustness of mitochondrial eve dating. Theor. Popul. Biol. 78(3), 165–172 (2010)CrossRefGoogle Scholar
  9. 9.
    Eigen, M., Schuster, P.: The hypercycle: a principle of natural self-organisation, part A. Naturwissenschaften 64(11), 541–565 (1977)CrossRefGoogle Scholar
  10. 10.
    Higgs, P.G., Lehman, N.: The RNA world: molecular cooperation at the origins of life. Nat. Rev. Genet. 16(1), 7–17 (2014)CrossRefGoogle Scholar
  11. 11.
    Joyce, G., Orgel, L.: Progress toward understanding the origin of the RNA world. Cold Spring Harb. Monogr. Arch. 43, 23–56 (2006)Google Scholar
  12. 12.
    Kimmel, M., Axelrod, D.E.: Branching Processes in Biology, Interdisciplinary Applied Mathematics, vol. 19. Springer, New York (2002)CrossRefGoogle Scholar
  13. 13.
    Mozafari, M.R., Reed, C.J., Rostron, C.: Formation of the initial cell membranes under primordial earth conditions. Cell. Mol. Biol. Lett. 9, 97–99 (2004)Google Scholar
  14. 14.
    Mulkidjanian, A.Y., Galperin, M.Y., Koonin, E.V.: Co-evolution of primordial membranes and membrane proteins. Trends Biochem. Sci. 34(4), 206–215 (2009)CrossRefGoogle Scholar
  15. 15.
    Myszor, D., Cyran, K.A.: Estimation of the number of primordial genes in a compartment model of RNA world. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions, pp. 151–161. Springer, Berlin (2009)Google Scholar
  16. 16.
    Myszor, D., Cyran, K.A.: Branching processes in the compartment model of RNA World. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2, AISC, vol. 103, pp. 153–160. Springer, Berlin (2011)CrossRefGoogle Scholar
  17. 17.
    Myszor, D., Cyran, K.A.: Mathematical modelling of molecule evolution in protocells. Int. J. Appl. Math. Comput. Sci. 23(1), 213–229 (2013)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Niesert, U., Harnasch, D., Bresch, C.: Origin of life between scylla and charybdis. J. Mol. Evol. 17(6), 348–353 (1981)CrossRefGoogle Scholar
  19. 19.
    Steitz, T.A., Moore, P.B.: RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem. Sci. 28(8), 411–418 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations