Advertisement

Application of a Morphological Similarity Measure to the Analysis of Shell Morphogenesis in Foraminifera

  • Maciej KomosinskiEmail author
  • Agnieszka Mensfelt
  • Paweł Topa
  • Jarosław Tyszka
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 391)

Abstract

This work evaluates the genotype-to-phenotype mapping defined by one of the models of growth of foraminifera. Foraminifera are simple unicellular organisms with very diverse morphologies. To analyze the mapping, a morphological similarity measure is needed that compares 3D structures. One of the key components of the similarity estimation algorithm is Singular Value Decomposition (SVD). Since this algorithm is heavily used and its performance is important, four SVD implementations have been compared in this work. Distance matrices of the phenotypes obtained for equally distant genotypes were computed using the similarity measure. For the visualization of the phenotype space, multidimensional scaling techniques were used. Visual comparison of the genotype and the phenotype spaces revealed characteristics and potential weaknesses of the analyzed model of foraminifera growth, and demonstrated usefulness of the proposed approach.

Keywords

Similarity Morphology Genotype Phenotype Foraminifera 

Notes

Acknowledgments

The research presented in the paper received partial support from Polish National Science Center (DEC-2013/09/B/ST10/01734).

References

  1. 1.
    Aguirre, J., Buldú, J.M., Stich, M., Manrubia, S.C.: Topological structure of the space of phenotypes: the case of RNA neutral networks. PloS One 6(10), e26324 (2011)CrossRefGoogle Scholar
  2. 2.
    Benoît, J., Guennebaud, G.: Eigen library. http://eigen.tuxfamily.org
  3. 3.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman and Hall/CRC, Boca Raton (2000)Google Scholar
  4. 4.
    Itseez: OpenCV library. http://opencv.org/
  5. 5.
    Komosinski, M., Koczyk, G., Kubiak, M.: On estimating similarity of artificial and real organisms. Theory Biosci. 120(3–4), 271–286 (2001)CrossRefGoogle Scholar
  6. 6.
    Komosinski, M., Kubiak, M.: Taxonomy in alife. Measures of similarity for complex artificial organisms. In: Kelemen, J., Sosík, P. (eds.) Advances in Artificial Life, LNCS, vol. 2159, pp. 685–694. Springer, Berlin Heidelberg (2001)Google Scholar
  7. 7.
    Komosinski, M., Kubiak, M.: Quantitative measure of structural and geometric similarity of 3D morphologies. Complexity 16(6), 40–52 (2011)CrossRefGoogle Scholar
  8. 8.
    Komosinski, M., Mensfelt, A., Topa, P., Tyszka, J., Ulatowski, S.: Foraminifera: genetics, morphology, simulation, evolution. http://www.framsticks.com/foraminifera
  9. 9.
    Komosinski, M., Ulatowski, S.: Genetic mappings in artificial genomes. Theory Biosci. 123(2), 125–137 (2004)CrossRefGoogle Scholar
  10. 10.
    Labaj, P., Topa, P., Tyszka, J., Alda, W.: 2D and 3D numerical models of the growth of foraminiferal shells. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., Gorbachev, Y.E. (eds.) Computational Science–ICCS 2003. LNCS, vol. 2657, pp. 669–678. Springer, Berlin Heidelberg (2003)Google Scholar
  11. 11.
  12. 12.
    Meyer, C.: Matrix Analysis and Applied Linear Algebra. SIAM Society for Industrial and Applied Mathematics, Philadelphia (2001)Google Scholar
  13. 13.
    Numerical Recipes Software: SVD implementation. http://www.nr.com/webnotes/nr3web2.pdf
  14. 14.
    Pawlowski, J., Holzmann, M., Tyszka, J.: New supraordinal classification of foraminifera: molecules meet morphology. Mar Micropaleontol 100, 1–10 (2013)CrossRefGoogle Scholar
  15. 15.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)Google Scholar
  16. 16.
    Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer Verlag, Berlin (2006)CrossRefGoogle Scholar
  17. 17.
    Topa, P., Komosinski, M., Bassara, M., Tyszka, J.: eVolutus: a configurable platform designed for ecological and evolutionary experiments tested on Foraminifera. In: Man-Machine Interactions 4. AISC, Springer (in press)Google Scholar
  18. 18.
    Topa, P., Tyszka, J., Bowser, S.S., Travis, J.L.: DPD model of foraminiferal chamber formation: simulation of actin meshwork–plasma membrane interactions. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) Parallel Processing and Applied Mathematics. LNCS, vol. 7204, pp. 588–597. Springer, Berlin Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Tyszka, J., Topa, P.: A new approach to modeling of foraminiferal shells. Paleobiology 31(3), 526–541 (2005)CrossRefGoogle Scholar
  20. 20.
    Tyszka, J. et al.: Morphogenetic bridge between molecules and morphology. In: FORAMS 2014, p. 6. The Grzybowski Foundation, Concepción, Chile (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maciej Komosinski
    • 1
    Email author
  • Agnieszka Mensfelt
    • 1
  • Paweł Topa
    • 2
    • 3
  • Jarosław Tyszka
    • 2
  1. 1.Institute of Computing SciencePoznan University of TechnologyPoznanPoland
  2. 2.Institute of Geological Sciences, Polish Academy of SciencesResearch Centre in CracowKrakówPoland
  3. 3.Department of Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations