Advertisement

Model Predictive Control of Residential Energy Systems Using Energy Storage and Controllable Loads

  • Philipp Braun
  • Lars Grüne
  • Christopher M. Kellett
  • Steven R. Weller
  • Karl Worthmann
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 22)

Abstract

Local energy storage and smart energy scheduling can be used to flatten energy profiles with undesirable peaks. Extending a recently developed model to allow controllable loads, we present Centralized and Decentralized Model Predictive Control algorithms to reduce these peaks. Numerical results show that the additional degree of freedom leads to improved performance.

Keywords

Centralized model predictive control Decentralized model predictive control Model predictive control 

References

  1. 1.
    Barker, S., Mishra, A., Irwin, D., Shenoy, P., Albrecht, J.: SmartCap: flattening peak electricity demand in smart homes. In: Proceedings of the IEEE International Conference on Pervasive Computing and Communications. Lugano, Switzerland (2012)Google Scholar
  2. 2.
    Grüne, L., Pannek, J.: Nonlinear Model Predictive Control. Theory and Algorithms. Springer, London (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Mohsenian-Rad, A.H., Leon-Garcia, A.: Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Trans. Smart Grid 1(2), 120–133 (2010)CrossRefGoogle Scholar
  4. 4.
    Nykamp, S., Molderink, A., Hurink, J.L., Smit, G.J.M.: Storage operation for peak shaving of distributed PV and wind generation. In: Proceedings of the IEEE PES Innovative Smart Grid Technologies (2013)CrossRefGoogle Scholar
  5. 5.
    Nykamp, S., Bosman, M.G.C., Molderink, A., Hurink, J.L., Smit, G.J.M.: Value of storage in distribution grids—competition or cooperation of stakeholders? IEEE Trans. Smart Grid 4(3), 1361–1370 (2013)CrossRefGoogle Scholar
  6. 6.
    Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)Google Scholar
  7. 7.
    Samadi, P., Mohsenian-Rad, H., Wong, V.W.S., Schober, R.: Tackling the load uncertainty challenges for energy consumption scheduling in smart grid. IEEE Trans. Smart Grid 4(2), 1007–1016 (2013)CrossRefGoogle Scholar
  8. 8.
    Worthmann, K., Kellett, C.M., Braun, P., Grüne, L., Weller, S.R.: Distributed and decentralized control of residential energy systems incorporating battery storage. IEEE Trans. Smart Grid (2015). doi:10.1109/TSG.2015.2392081Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Philipp Braun
    • 1
  • Lars Grüne
    • 1
  • Christopher M. Kellett
    • 2
  • Steven R. Weller
    • 2
  • Karl Worthmann
    • 3
  1. 1.Mathematisches InstitutUniversität BayreuthBayreuthGermany
  2. 2.School of Electrical Engineering and Computer Science at the University of NewcastleCallaghanAustralia
  3. 3.Institut für MathematikTechnische Universität IlmenauIlmenauGermany

Personalised recommendations