Family-Based Model Checking Without a Family-Based Model Checker

  • Aleksandar S. Dimovski
  • Ahmad Salim Al-Sibahi
  • Claus Brabrand
  • Andrzej Wąsowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9232)

Abstract

Many software systems are variational: they can be configured to meet diverse sets of requirements. Variability is found in both communication protocols and discrete controllers of embedded systems. In these areas, model checking is an important verification technique. For variational models (systems with variability), specialized family-based model checking algorithms allow efficient verification of multiple variants, simultaneously. These algorithms scale much better than “brute force” verification of individual systems, one-by-one. Nevertheless, they can deal with only very small variational models.

We address two key problems of family-based model checking. First, we improve scalability by introducing abstractions that simplify variability. Second, we reduce the burden of maintaining specialized family-based model checkers, by showing how the presented variability abstractions can be used to model-check variational models using the standard version of (single system) SPIN. The abstractions are first defined as Galois connections on semantic domains. We then show how to translate them into syntactic source-to-source transformations on variational models. This allows the use of SPIN with all its accumulated optimizations for efficient verification of variational models without any knowledge about variability. We demonstrate the practicality of this method on several examples using both the \(\overline{\text {SNIP}}\) (family based) and SPIN (single system) model checkers.

References

  1. 1.
    Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines - Concepts and Implementation. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.: Principles of model checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  3. 3.
    Brabrand, C., Ribeiro, M., Tolêdo, T., Borba, P.: Intraprocedural dataflow analysis for software product lines. In: Hirschfeld, R., Tanter, É., Sullivan, K.J., Gabriel, R.P. (eds.) Proceedings of the 11th International Conference on Aspect-oriented Software Development, AOSD 2012, pp. 13–24. ACM (2012)Google Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  5. 5.
    Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling: Syntax and semantics of TVL. Sci. Comput. Program. 76(12), 1130–1143 (2011)CrossRefGoogle Scholar
  6. 6.
    Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Model checking software product lines with SNIP. STTT 14(5), 589–612 (2012)CrossRefGoogle Scholar
  7. 7.
    Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured transition systems: Foundations for verifying variability-intensive systems and their application to LTL model checking. IEEE Trans. Softw. Eng. 39(8), 1069–1089 (2013)CrossRefGoogle Scholar
  8. 8.
    Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley, Boston (2001)Google Scholar
  9. 9.
    Cordy, M., Classen, A., Perrouin, G., Schobbens, P., Heymans, P., Legay, A.: Simulation-based abstractions for software product-line model checking. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) 34th International Conference on Software Engineering, ICSE 2012, pp. 672–682. IEEE (2012)Google Scholar
  10. 10.
    Cordy, M., Heymans, P., Legay, A., Schobbens, P., Dawagne, B., Leucker, M.: Counterexample guided abstraction refinement of product-line behavioural models. In: Cheung, S., Orso, A., Storey, M.D. (eds.) Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22), pp. 190–201. ACM (2014)Google Scholar
  11. 11.
    Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M., Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F. IOS Press, Amsterdam (1999)Google Scholar
  12. 12.
    Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  13. 13.
    Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Trans. Program. Lang. Syst. 19(2), 253–291 (1997)CrossRefGoogle Scholar
  14. 14.
    Dimovski, A., Brabrand, C., Wąsowski, A.: Variability abstractions: Trading precision for speed in family-based analyses. In: 29th European Conference on Object-Oriented Programming ECOOP 2015 (2015)Google Scholar
  15. 15.
    Gallardo, M., Martínez, J., Merino, P., Pimentel, E.: aspin: a tool for abstract model checking. STTT 5(2–3), 165–184 (2004)Google Scholar
  16. 16.
    Holzmann, G.J.: The SPIN Model Checker - primer and reference manual. Addison-Wesley, Boston (2004)Google Scholar
  17. 17.
    Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain Analysis (FODA) feasibility study. Carnegie-Mellon University Software Engineering Institute, Technical report (1990)Google Scholar
  18. 18.
    Kästner, C., Apel, S.: Type-checking software product lines - A formal approach. In: 23rd IEEE/ACM International Conference on Automated Software Engineering (ASE) 2008, pp. 258–267. IEEE (2008)Google Scholar
  19. 19.
    Midtgaard, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Systematic derivation of correct variability-aware program analyses. Sci. Comput. Program. 105, 145–170 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aleksandar S. Dimovski
    • 1
  • Ahmad Salim Al-Sibahi
    • 1
  • Claus Brabrand
    • 1
  • Andrzej Wąsowski
    • 1
  1. 1.IT University of CopenhagenCopenhagenDenmark

Personalised recommendations