Advertisement

Model Counting for Complex Data Structures

  • Antonio Filieri
  • Marcelo F. Frias
  • Corina S. Păsăreanu
  • Willem Visser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9232)

Abstract

We extend recent approaches for calculating the probability of program behaviors, to allow model counting for complex data structures with numeric fields. We use symbolic execution with lazy initialization to compute the input structures leading to the occurrence of a target event, while keeping a symbolic representation of the constraints on the numeric data. Off-the-shelf model counting tools are used to count the solutions for numerical constraints and field bounds encoding data structure invariants are used to reduce the search space. The technique is implemented in the Symbolic PathFinder tool and evaluated on several complex data structures. Results show that the technique is much faster than an enumeration-based method that uses the Korat tool and also highlight the benefits of using the field bounds to speed up the analysis.

Keywords

Model counting Probabilistic software analysis Symbolic execution 

References

  1. 1.
  2. 2.
  3. 3.
    Adje, A., Bouissou, O., Goubault-Larrecq, J., Goubault, E., Putot, S.: Static analysis of programs with imprecise probabilistic inputs. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 22–47. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., Ernst, M.D.: Leveraging existing instrumentation to automatically infer invariant-constrained models. In: ESEC/FSE, pp. 267–277 (2011)Google Scholar
  6. 6.
    Birnbaum, E., Lozinskii, E.L.: The good old davis-putnam procedure helps counting models. J. Artif. Intell. Res. (JAIR) 10, 457–477 (1999)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S., Visser, W.: Compositional solution space quantification for probabilistic software analysis. In: PLDI, pp. 123–132. ACM (2014)Google Scholar
  8. 8.
    Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generalization of p-boxes to affine arithmetic. Computing 94, 189–201 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java predicates. In: ISSTA, pp. 123–133 (2002)Google Scholar
  10. 10.
    Cadar, C., Dunbar, D., Engler, D.R.: Klee: unassisted and automatic generation of high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)Google Scholar
  11. 11.
    Chistikov, D.V., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and value estimation for probabilistic programs. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 320–334. Springer, Heidelberg (2015) Google Scholar
  12. 12.
    Clarke, L.A.: A system to generate test data and symbolically execute programs. IEEE Trans. Soft. Eng. 2(3), 215–222 (1976)CrossRefGoogle Scholar
  13. 13.
    Cormen, T.H.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  14. 14.
    De Loera, J.A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Wu, J.: Software for exact integration of polynomials over polyhedra. ACM Commun. Comput. Algebra 45(3/4), 169–172 (2012)CrossRefGoogle Scholar
  15. 15.
    Filieri, A., Pasareanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder. In: ICSE, pp. 622–631 (2013)Google Scholar
  16. 16.
    Filieri, A., Pasareanu, C.S., Visser, W., Geldenhuys, J.: Statistical symbolic execution with informed sampling. In: FSE, pp. 437–448 (2014)Google Scholar
  17. 17.
    Galeotti, J.P., Rosner, N., Pombo, CGL., Frias, M.F.: Analysis of invariants for efficient bounded verification. In: ISSTA, USA, pp. 25–36 (2010)Google Scholar
  18. 18.
    Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In: ISSTA, pp. 166–176 (2012)Google Scholar
  19. 19.
    Ghezzi, C., Pezzè, M., Sama, M., Tamburrelli, G.: Mining behavior models from user-intensive web applications. In: ICSE, pp. 277–287 (2014)Google Scholar
  20. 20.
    Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In: PLDI, pp. 213–223 (2005)Google Scholar
  21. 21.
    Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In: ICSE FOSE, pp. 167–181 (2014)Google Scholar
  22. 22.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  23. 23.
    Galeotti, J., Rosner, N., Lopez Pombo, C., Frias, M.F.: Taco: efficient sat-based bounded verification using symmetry breaking and tight bounds. IEEE Trans. Soft. Eng. 39(9), 1283–1307 (2013)CrossRefGoogle Scholar
  24. 24.
    Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. 11(2), 256–290 (2002)CrossRefGoogle Scholar
  25. 25.
    Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 553–568. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  26. 26.
    King, J.C.: Symbolic execution and program testing. Comm. ACM 19(7), 385–394 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Lisper, B.: Fully automatic, parametric worst-case execution time analysis. In: Proceedings of the 3rd International Workshop on Worst-Case Execution Time Analysis, WCET, pp. 99–102 (2003)Google Scholar
  28. 28.
    Luckow, K., Păsăreanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and approximate probabilistic symbolic execution for nondeterministic programs. In: ASE, pp. 575–586. ACM (2014)Google Scholar
  29. 29.
    Luu, L., Shinde, S., Saxena, P., Demsky, B.: A model counter for constraints over unbounded strings. In: PLDI, p. 57 (2014)Google Scholar
  30. 30.
    Monniaux, D.: An abstract Monte-Carlo method for the analysis of probabilistic programs. In: POPL, pp. 93–101 (2001)Google Scholar
  31. 31.
    Nori, A.V., Hur, C.-K., Rajamani, S.K., Samuel, S.: R2: an efficient mcmc sampler for probabilistic programs. In: AAAI Conference on Artificial Intelligence (AAAI). AAAI, July 2014Google Scholar
  32. 32.
    Pasareanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta, N.: Symbolic pathfinder: integrating symbolic execution with model checking for Java bytecode analysis. Autom. Softw. Eng. 20(3), 391–425 (2013)CrossRefGoogle Scholar
  33. 33.
    Pestman, W.R.: Mathematical Statistics. De Gruyter, Berlin (2009)zbMATHCrossRefGoogle Scholar
  34. 34.
    Phan, Q.-S., Malacaria, P., Păsăreanu, C.S., D’Amorim, M.: Quantifying information leaks using reliability analysis. In: SPIN, pp. 105–108. ACM (2014)Google Scholar
  35. 35.
    Rosner, N., Geldenhuys, J., Aguirre, N., Visser, W., Frias, M.F.: Bliss: improved symbolic execution by bounded lazy initialization with sat support. IEEE Trans. Soft. Eng. 99, 639–660 (2015)Google Scholar
  36. 36.
    Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: inferring whole program properties from finitely many paths. In: PLDI, pp. 447–458 (2013)Google Scholar
  37. 37.
    Tillmann, N., de Halleux, J.: Pex-white box test generation for NET. In: Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  38. 38.
    Turjan, A., Kienhuis, B., Deprettere, E.F.: A compile time based approach for solving out-of-order communication in Kahn process networks. In: ASAP, pp. 17–28 (2002)Google Scholar
  39. 39.
    Visser, W., Pasareanu, C.S., Pelanek, R.: Test input generation for Java containers using state matching. In: ISSTA, pp. 37–48 (2006)Google Scholar
  40. 40.
    Yorsh, G., Reps, T.W., Sagiv, M.: Symbolically computing most-precise abstract operations for shape analysis. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 530–545. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  41. 41.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to Simulink/Stateflow verification. In: HSCC, pp. 243–252. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Antonio Filieri
    • 1
  • Marcelo F. Frias
    • 2
  • Corina S. Păsăreanu
    • 3
  • Willem Visser
    • 4
  1. 1.University of StuttgartStuttgartGermany
  2. 2.Instituto Tecnológico de Buenos Aires and CONICETBuenos AiresArgentina
  3. 3.Carnegie Mellon Silicon ValleyNASA AmesMoffet Field, Mountain ViewUSA
  4. 4.Stellenbosch UniversityStellenboschSouth Africa

Personalised recommendations