Adaptive Moment Closure for Parameter Inference of Biochemical Reaction Networks

  • Sergiy Bogomolov
  • Thomas A. Henzinger
  • Andreas Podelski
  • Jakob Ruess
  • Christian SchillingEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9308)


Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space.


Stochastic reaction networks Continuous-time markov chains Parameter inference Moment closure 



This work was partly supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS,, by the European Research Council (ERC) under grant 267989 (QUAREM) and by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award). J.R. acknowledges support from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agreement no. 291734.


  1. 1.
    Bertaux, F., Stoma, S., Drasdo, D., Batt, G.: Modeling dynamics of cell-to-cell variability in TRAIL-induced apoptosis explains fractional killing and predicts reversible resistance. PLoS Comput. Biol. 10(10), e1003893 (2014)CrossRefGoogle Scholar
  2. 2.
    Engblom, S.: Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180(2), 498–515 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gillespie, D.: A rigorous derivation of the chemical master equation. Phys. A 188(1–3), 404–425 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529, 199–264 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hasty, J., Pradines, J., Dolnik, M., Collins, J.: Noise-based switches and amplifiers for gene expression. Proc. Nat. Acad. Sci. U.S.A. 97(5), 2075–2080 (2000)CrossRefGoogle Scholar
  7. 7.
    Hespanha, J.: StochDynTools - a MATLAB toolbox to compute moment dynamics for stochastic networks of bio-chemical reactions (2006).
  8. 8.
    Hespanha, J.: Moment closure for biochemical networks. In: Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing (IEEE), St Julians, Malta, pp. 142–147 (2008)Google Scholar
  9. 9.
    Kügler, P.: Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models. PLoS ONE 7(8), e43001 (2012)CrossRefGoogle Scholar
  10. 10.
    Lillacci, G., Khammash, M.: The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics 29(18), 2311–2319 (2013)CrossRefGoogle Scholar
  11. 11.
    Matis, T., Guardiola, I.: Achieving moment closure through cumulant neglect. Math. J. 12 (2010). doi: 10.3888/tmj.12-2
  12. 12.
    McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Nat. Acad. Sci. U.S.A. 94(3), 814–819 (1997)CrossRefGoogle Scholar
  13. 13.
    Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104 (2006)CrossRefGoogle Scholar
  14. 14.
    Neuert, G., Munsky, B., Tan, R., Teytelman, L., Khammash, M., van Oudenaarden, A.: Systematic identification of signal-activated stochastic gene regulation. Science 339, 584–587 (2013)CrossRefGoogle Scholar
  15. 15.
    Parise, F., Lygeros, J., Ruess, J.: Bayesian inference for stochastic individual-based models of ecological systems: an optimal pest control case study. Front. Environ. Sci. 3, 42 (2015)CrossRefGoogle Scholar
  16. 16.
    Ruess, J., Lygeros, J.: Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks. ACM Trans. Model. Comput. Simul. (TOMACS) 25(2), 8 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ruess, J., Milias-Argeitis, A., Lygeros, J.: Designing experiments to understand the variability in biochemical reaction networks. J. R. Soc. Interface 10(88), 20130588 (2013)CrossRefGoogle Scholar
  18. 18.
    Ruess, J., Milias-Argeitis, A., Summers, S., Lygeros, J.: Moment estimation for chemically reacting systems by extended Kalman filtering. J. Chem. Phys. 135, 165102 (2011)CrossRefGoogle Scholar
  19. 19.
    Ruess, J., Parise, F., Milias-Argeitis, A., Khammash, M., Lygeros, J.: Iterative experiment design guides the characterization of a light-inducible gene expression circuit. Proc. Nat. Acad. Sci. U.S.A. 112(26), 8148–8153 (2015)CrossRefGoogle Scholar
  20. 20.
    Samoilov, M., Arkin, A.: Deviant effects in molecular reaction pathways. Nat. Biotechnol. 24(10), 1235–1240 (2006)CrossRefGoogle Scholar
  21. 21.
    Singh, A., Hespanha, J.: Lognormal moment closures for biochemical reactions. In: 45th IEEE Conference on Decision and Control, pp. 2063–2068 (2006)Google Scholar
  22. 22.
    Whittle, P.: On the use of the normal approximation in the treatment of stochastic processes. J. Roy. Stat. Soc.: Ser. A (Methodol.) 19, 268–281 (1957)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Wolf, V., Goel, R., Mateescu, M., Henzinger, T.: Solving the chemical master equation using sliding windows. BMC Syst. Biol. 4, 42 (2010)CrossRefGoogle Scholar
  24. 24.
    Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., Koeppl, H.: Moment-based inference predicts bimodality in transient gene expression. Proc. Nat. Acad. Sci. U.S.A. 109(21), 8340–8345 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sergiy Bogomolov
    • 1
  • Thomas A. Henzinger
    • 1
  • Andreas Podelski
    • 2
  • Jakob Ruess
    • 1
  • Christian Schilling
    • 2
    Email author
  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.University of FreiburgFreiburgGermany

Personalised recommendations