SReach: A Probabilistic Bounded Delta-Reachability Analyzer for Stochastic Hybrid Systems

  • Qinsi WangEmail author
  • Paolo Zuliani
  • Soonho Kong
  • Sicun Gao
  • Edmund M. Clarke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9308)


In this paper, we present a new tool SReach, which solves probabilistic bounded reachability problems for two classes of models of stochastic hybrid systems. The first one is (nonlinear) hybrid automata with parametric uncertainty. The second one is probabilistic hybrid automata with additional randomness for both transition probabilities and variable resets. Standard approaches to reachability problems for linear hybrid systems require numerical solutions for large optimization problems, and become infeasible for systems involving both nonlinear dynamics over the reals and stochasticity. SReach encodes stochastic information by using a set of introduced random variables, and combines \(\delta \)-complete decision procedures and statistical tests to solve \(\delta \)-reachability problems in a sound manner. Compared to standard simulation-based methods, it supports non-deterministic branching, increases the coverage of simulation, and avoids the zero-crossing problem. We demonstrate SReach’s applicability by discussing three representative biological models and additional benchmarks for nonlinear hybrid systems with multiple probabilistic system parameters.


Satisfiability Modulo Theory Hybrid Automaton Reachability Analysis Sequential Probability Ratio Test Reachability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley - Interscience, New York (1974)zbMATHGoogle Scholar
  2. 2.
    Blom, H.A., Lygeros, J., Everdij, M., Loizou, S., Kyriakopoulos, K.: Stochastic Hybrid Systems: Theory and Safety Critical Applications. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bruchovsky, N., Klotz, L., Crook, J., Goldenberg, L.: Locally advanced prostate cancer: biochemical results from a prospective phase II study of intermittent androgen suppression for men with evidence of prostate-specific antigen recurrence after radiotherapy. Cancer 109(5), 858–867 (2007)CrossRefGoogle Scholar
  4. 4.
    Bruchovsky, N., Klotz, L., et al.: Final results of the Canadian prospective phase II trial of intermittent androgen suppression for men in biochemical recurrence after radiotherapy for locally advanced prostate cancer. Cancer 107(2), 389–395 (2006)CrossRefGoogle Scholar
  5. 5.
    Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253(3), 544–560 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking for embedded ansi-c software. IEEE Softw. Eng. 38(4), 957–974 (2012)CrossRefGoogle Scholar
  8. 8.
    Ellen, C., Gerwinn, S., Fränzle, M.: Statistical model checking for stochastic hybrid systems involving nondeterminism over continuous domains. Int. J. Softw. Tools Technol. Transf. 17, 1–20 (2014)Google Scholar
  9. 9.
    Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52, April 2011Google Scholar
  10. 10.
    Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: a novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Gao, S., Kong, S., Chen, W., Clarke, E.M.: \(\delta \)-complete analysis for bounded reachability of hybrid systems (2014). CoRR, arXiv:1404.7171
  12. 12.
    Hahn, E.M., Norman, G., Parker, D., Wachter, B., Zhang, L.: Game-based abstraction and controller synthesis for probabilistic hybrid systems. In: QEST, pp. 69–78. IEEE (2011)Google Scholar
  13. 13.
    Henzinger, T.A.: The Theory of Hybrid Automata. Springer, Berlin (2000)CrossRefGoogle Scholar
  14. 14.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hu, J., Lygeros, J., Sastry, S.S.: Towards a theory of stochastic hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  16. 16.
    Kass, R.E., Raftery, A.E.: Bayes factors. JASA 90(430), 773–795 (1995)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lai, T.L.: Nearly optimal sequential tests of composite hypotheses. AOS 16(2), 856–886 (1988)zbMATHGoogle Scholar
  18. 18.
    Wang, Q., Miskov-Zivanov, N., Telmex, C., Clarke, E.M.: Formal analysis provides parameters for guiding hyperoxidation in bacteria using phototoxic proteins. GLSVLSI 2015 (2015)Google Scholar
  19. 19.
    Shmarov, F., Zuliani, P.: Probreach: verified probabilistic delta-reachability for stochastic hybrid systems. In: HSCC (2015)Google Scholar
  20. 20.
    Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  21. 21.
    Sproston, J.: Model checking for probabilistic timed and hybrid systems. Ph.D. thesis. SCS, University of Birmingham (2001)Google Scholar
  22. 22.
    Tanaka, G., Hirata, Y., Goldenberg, L., Bruchovsky, N., Aihara, K.: Mathematical modelling of prostate cancer growth and its application to hormone therapy. Phil. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 368(1930), 5029–5044 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tinelli, C.: SMT-based model checking. In: NASA FM, p. 1 (2012)Google Scholar
  24. 24.
    Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Younes, H.L.: Verification and planning for stochastic processes with asynchronous events. Technical report, DTIC Document (2005)Google Scholar
  26. 26.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to stateflow/simulink verification. Formal Methods Syst. Des. 43(2), 338–367 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Qinsi Wang
    • 1
    Email author
  • Paolo Zuliani
    • 2
  • Soonho Kong
    • 1
  • Sicun Gao
    • 3
  • Edmund M. Clarke
    • 1
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.School of Computing ScienceNewcastle UniversityNewcastle upon TyneUK
  3. 3.CSAILMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations