International Conference on Computational Methods in Systems Biology

CMSB 2015: Computational Methods in Systems Biology pp 264-276 | Cite as

Analysing Cell Line Specific EGFR Signalling via Optimized Automata Based Model Checking

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9308)

Abstract

Building models with a high degree of specificity, e.g. for particular cell lines, is becoming an important tool in the advancement towards personalised medicine. Constraint-based modelling approaches allow for utilizing general system knowledge to generate a set of possible models that can be further filtered with more specific data. Here, we exploit such an approach in a Boolean modelling framework to investigate EGFR signalling for different cancer cell lines, motivated by a study from Klinger et al. [8]. To optimize performance of the underlying model checking procedure, we present a number of constraint encodings tailored to describing common data types and experimental set-ups. This results in a significant increase in the performance of the approach.

Keywords

Boolean Networks Model checking EGFR Cancer 

References

  1. 1.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)MATHGoogle Scholar
  2. 2.
    Feng, Z., Levine, A.J.: The regulation of energy metabolism and the igf-1/mtor pathways by the p53 protein. Trends Cell Biol. 20(7), 427–434 (2010)CrossRefGoogle Scholar
  3. 3.
    Gallet, E., Manceny, M., Le Gall, P., Ballarini, P.: An LTL model checking approach for biological parameter inference. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 155–170. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 29, 2320–2326 (2013)CrossRefGoogle Scholar
  5. 5.
    Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about systems. Cambridge University Press, Cambridge (2004) CrossRefGoogle Scholar
  6. 6.
    Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)CrossRefGoogle Scholar
  7. 7.
    Klarner, H.: Contributions to the Analysis of Qualitative Models of Regulatory Networks. Ph.D. thesis, Freie Universität Berlin, Germany (2015)Google Scholar
  8. 8.
    Klinger, B., Sieber, A., Fritsche-Guenther, R., Witzel, F., Berry, L., Schumacher, D., Yan, Y., Durek, P., Merchant, M., Schäfer, R., et al.: Network quantification of EGFR signaling unveils potential for targeted combination therapy. Mol. Syst. Biol. 9(1), 673 (2013)CrossRefGoogle Scholar
  9. 9.
    Rozengurt, E., Soares, H.P., Sinnet-Smith, J.: Suppression of feedback loops mediated by pi3k/mtor induces multiple overactivation of compensatory pathways: An unintended consequence leading to drug resistance. Mol. Cancer Ther. 13(11), 2477–2488 (2014)CrossRefGoogle Scholar
  10. 10.
    Samaga, R., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Klamt, S.: The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)CrossRefGoogle Scholar
  11. 11.
    Tanti, J.-F., Jager, J.: Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (irs) serine phosphorylation. Curr. Opin. Pharmacol. 9(6), 753–762 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Freie Universität BerlinBerlinGermany

Personalised recommendations