A Framework for Modelling Real-World Knowledge Capable of Obtaining Answers to Fuzzy and Flexible Searches

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 613)

Abstract

The Internet has become a place where massive amounts of information and data are being generated every day. This information is most of the times stored in a non-structured way, but the times it is structured in databases it cannot be retrieved by using easy fuzzy queries: we need human intervention to determine how the non-fuzzy information stored needs to be combined and processed to answer a fuzzy query. We present a web interface for posing fuzzy and flexible queries and a framework. Our framework allows to represent non-fuzzy concepts, fuzzy concepts and relations between them, giving the programmer the capability to model any real-world knowledge. It is this representation in the framework’s language what it uses to (1) determine how to answer the query without any human intervention and (2) provide the search engine with the information it needs to present the user a friendly and easy to use query form. We expect this work contributes to the development of more human-oriented fuzzy search engines.

Keywords

Search engine Fuzzy logic Framework 

References

  1. 1.
    Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril—Fuzzy and Evidential Reasoning in Artificial Intelligence. Wiley, New York (1995)Google Scholar
  2. 2.
    Bobillo, F., Straccia, U.: FuzzyDL: an expressive fuzzy description logic reasoner. In: 2008 International Conference on Fuzzy Systems (FUZZ-08), pp. 923–930. IEEE Computer Society (2008)Google Scholar
  3. 3.
    Bordogna, G. Pasi, G.: A fuzzy query language with a linguistic hierarchical aggregator. In: Proceedings of the 1994 ACM Symposium on Applied computing, SAC’94, pp. 184–187. ACM, New York (1994)Google Scholar
  4. 4.
    Bosc, P., Pivert, O.: SQLF: a relational database language for fuzzy querying. IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bosc, P., Pivert, O.: On a strengthening connective for flexible database querying. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1233–1238 (2011)Google Scholar
  6. 6.
    Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how? In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) Flexible Query Answering Systems, pp. 45–60. Kluwer Academic Publishers, Norwell (1997)Google Scholar
  7. 7.
    Guadarrama, S., Muñoz-Hernández, S., Vaucheret, C.: Fuzzy prolog: a new approach using soft constraints propagation. Fuzzy Sets Syst. (FSS) 144(1), 127–150 (2004). Possibilistic Logic and Related IssuesCrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Ishizuka, M., Kanai, N.: Prolog-ELF incorporating fuzzy logic. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, IJCAI’85, pp. 701–703. Morgan Kaufmann Publishers Inc, San Francisco (1985)Google Scholar
  9. 9.
    Li, D., Liu, D.: A Fuzzy Prolog Database System. Wiley, New York (1990)Google Scholar
  10. 10.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A completeness theorem for multi-adjoint logic programming. In: FUZZ, pp. 1031–1034. IEEE (2001)Google Scholar
  11. 11.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous semantics. In: Eiter, T., Faber, W., Truszczynski, M. (eds.) LPNMR. Lecture Notes in Computer Science, vol. 2173, pp. 351–364. Springer, Berlin (2001)Google Scholar
  12. 12.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A procedural semantics for multi-adjoint logic programming. In: Brazdil, P., Jorge, A. (eds.) EPIA. Lecture Notes in Computer Science, vol. 2258, pp. 290–297. Springer, Berlin (2001)Google Scholar
  13. 13.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A multi-adjoint approach to similarity-based unification. Electron. Notes Theor. Comput. Sci. 66(5):70–85 (2002). UNCL’2002, Unification in Non-Classical Logics (ICALP 2002 Satellite Workshop)Google Scholar
  14. 14.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 146(1), 43–62 (2004)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Morcillo, P.J., Moreno, G.: Floper, a fuzzy logic programming environment for research. In: Fundación Universidad de Oviedo (ed.) Proceedings of VIII Jornadas sobre Programación y Lenguajes (PROLE’08), pp. 259–263. Gijón, October 2008Google Scholar
  16. 16.
    Moreno, J.M., Ojeda-Aciego, M.: On first-order multi-adjoint logic programming. In: 11th Spanish Congress on Fuzzy Logic and Technology (2002)Google Scholar
  17. 17.
    Muñoz-Hernández, S., Pablos-Ceruelo, V., Strass, H.: RFuzzy: syntax, semantics and implementation details of a simple and expressive fuzzy tool over prolog. Inf. Sci. 181(10), 1951–1970 (2011). Special Issue on Information Engineering Applications Based on LatticesGoogle Scholar
  18. 18.
    Pablos-Ceruelo, V., Muñoz-Hernández, S.: Introducing priorities in rfuzzy: syntax and semantics. In: Proceedings of the 11th International Conference on Mathematical Methods in Science and Engineering, CMMSE 2011, vol. 3, pp. 918–929, Benidorm (Alicante), June 2011Google Scholar
  19. 19.
    Ribeiro, R.A., Moreira, A.M.: Fuzzy query interface for a business database. Int. J. Hum.-Comput. Stud. 58(4), 363–391 (2003)CrossRefGoogle Scholar
  20. 20.
    Rodriguez, L.J.T.: A contribution to database flexible querying: fuzzy quantified queries evaluation, P.hD. thesis, November 2005Google Scholar
  21. 21.
    Vaucheret, C., Guadarrama, S., Muñoz-Hernández, S.: Fuzzy prolog: a simple general implementation using CLP(R). In: Baaz, M., Voronkov, A. (eds.) LPAR. Lecture Notes in Artificial Intelligence, vol. 2514, pp. 450–464. Springer, Berlin (2002)Google Scholar
  22. 22.
    Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets Syst. 124(3), 361–370 (2001)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Víctor Pablos-Ceruelo
    • 1
  • Susana Munoz-Hernandez
    • 1
  1. 1.The Babel Research Group, Facultad de InformáticaUniversidad Politécnica de MadridMadridSpain

Personalised recommendations