Advertisement

Modelling Spatial Structures

  • Franz-Benjamin Mocnik
  • Andrew U. Frank
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9368)

Abstract

Data is spatial if it contains references to space. We can easily detect explicit references, for example coordinates, but we cannot detect whether data implicitly contains references to space, and whether it has properties of spatial data, if additional semantic information is missing. In this paper, we propose a graph model that meets typical properties of spatial data. We can, by the comparison of a graph representation of a data set to the graph model, decide whether the data set (implicitly or explicitly) has these typical properties of spatial data.

Keywords

Space Spatial structure Spatial data Spatial information Time Tobler’s law Principle of least effort Graph model Spatial network Scale invariance 

References

  1. 1.
    Aldous, D.J., Shun, J.: Connected spatial networks over random points and a route-length statistic. Stat. Sci. 25(3), 275–288 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Archdeacon, D., Bonnington, C.P., Little, C.H.C.: An algebraic characterization of planar graphs. J. Graph Theor. 19(2), 237–250 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Barabási, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Phys. A 311, 590–614 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Barabási, A.L., Albert, R., Jeon, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Phys. A 281(1–4), 69–77 (2000)CrossRefGoogle Scholar
  6. 6.
    Barabási, A.L., Ravasz, E., Vicsek, T.: Deterministic scale-free networks. Phys. A 299(3–4), 559–564 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Barthélemy, M.: Crossover from scale-free to spatial networks. Europhys. Lett. 63(6), 915–921 (2003)CrossRefGoogle Scholar
  8. 8.
    Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3), 1–101 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 322–331 (1990)Google Scholar
  10. 10.
    Christaller, W.: Die zentralen Orte in Süddeutschland: Eine ökonomisch-geographische Untersuchung über die Gesetzmässigkeit der Verbreitung und Entwicklung der Siedlungen mit städtischen Funktionen. Fischer, Jena (1933)Google Scholar
  11. 11.
    Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and compaction of adjacency matrices. Theor. Comput. Sci. 86, 243–266 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Coleman, T.F., Moré, J.J.: Estimation of sparse Jacobian matrices and graph coloring problems. SIAM J. Numer. Anal. 20(1), 187–209 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nature 3, 276–282 (2007)Google Scholar
  14. 14.
    Denise, A., Vasconcellos, M., Welsh, D.J.A.: The random planar graph. Congressus Numerantium 113, 61–79 (1996)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Erdős, P., Rényi, A.: On random graphs I. Publicationes Math. Debrecen 6, 290–297 (1959)zbMATHGoogle Scholar
  16. 16.
    European Commission: Commission Regulation (EU) No 97/2010 of 4 February 2010 entering a name in the register of traditional specialities guaranteed [Pizza Napoletana (TSG)]. Official J. Eur. Union 53(L34), 7–16 (2010)Google Scholar
  17. 17.
    Franklin, C.: An introduction to geographic information systems: linking maps to databases. Database 15(2), 12–21 (1992)MathSciNetGoogle Scholar
  18. 18.
    de Fraysseix, H., Rosenstiehl, P.: A depth-first-search characterization of planarity. Ann. Discret. Math. 13, 75–80 (1982)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)CrossRefzbMATHGoogle Scholar
  20. 20.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 47–57 (1984)Google Scholar
  21. 21.
    Hahmann, S., Burghardt, D., Weber, B.: 80% of all information is geospatially referenced? Towards a research framework: using the semantic web for (in)validating this famous geo assertion. In: Proceedings of the 14th AGILE Conference on Geographic Information Science (2011)Google Scholar
  22. 22.
    Hecht, B., Moxley, E.: Terabytes of Tobler: evaluating the first law in a massive, domain-neutral representation of world knowledge. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 88–105. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  23. 23.
    Holland, P.W., Leinhardt, S.: An exponential family of probability distributions for directed graphs. J. Am. Stat. Assoc. 76(373), 33–50 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Hunter, D.R., Goodreau, S.M., Handcock, M.S.: Goodness of fit of social network models. J. Am. Stat. Assoc. 103(481), 248–258 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Huson, M.L., Sen, A.: Broadcast scheduling algorithms for radio networks. In: Proceedings of the Military Communications Conference (MILCOM), vol. 2, pp. 647–651 (1995)Google Scholar
  26. 26.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  27. 27.
    Jespersen, S.N., Blumen, A.: Small-world networks: links with long-tailed distributions. Phys. Rev. E 62(5), 6270–6274 (2000)CrossRefGoogle Scholar
  28. 28.
    Kalapala, V., Sanwalani, V., Clauset, A., Moore, C.: Scale invariance in road networks. Phys. Rev. E 73, 026130 (2006)CrossRefGoogle Scholar
  29. 29.
    Kuhn, W.: Core concepts of spatial information for transdisciplinary research. Int. J. Geogr. Inf. Sci. 26(12), 2267–2276 (2012)CrossRefGoogle Scholar
  30. 30.
    Kuratowski, C.: Sur le problème des courbes gauches en Topologie. Fundamenta Math. 15(1), 271–283 (1930)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web (WWW), pp. 641–650 (2010)Google Scholar
  32. 32.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the 28th Conference on Human Factors in Computing Systems (CHI), pp. 1361–1370 (2010)Google Scholar
  33. 33.
    Lippai, I.: Water system design by optimization: Colorado Springs utilities case studies. In: Proceedings of the ASCE Pipeline Division Specialty Conference (Pipelines), pp. 1058–1070 (2005)Google Scholar
  34. 34.
    Louf, R., Roth, C., Barthelemy, M.: Scaling in transportation networks. PLoS ONE 9(7), e102007 (2014)CrossRefGoogle Scholar
  35. 35.
    MacLane, S.: A combinatorial condition for planar graphs. Fundamenta Math. 28(1), 22–31 (1937)zbMATHGoogle Scholar
  36. 36.
    McDiarmid, C.: Random graphs on surfaces. J. Comb. Theor. Ser. B 98(4), 778–797 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    McDiarmid, C., Steger, A., Welsh, D.J.A.: Random planar graphs. J. Comb. Theor. Ser. B 93(2), 187–205 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Mocnik, F.-B.: Modelling spatial information. In: Proceedings of the 1st Vienna Young Scientists Symposium (VSS) (2015)Google Scholar
  39. 39.
    Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the Gnutella network: properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Comput. 6(1), 50–57 (2002)CrossRefGoogle Scholar
  40. 40.
    Sala, A., Cao, L., Wilson, C., Zablit, R., Zheng, H., Zhao, B.Y.: Measurement-calibrated graph models for social network experiments. In: Proceedings of the 19th International World Wide Web Conference (WWW), pp. 861–870 (2010)Google Scholar
  41. 41.
    Schnyder, W.: Planar graphs and poset dimension. Order 5(4), 323–343 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Soon-Hyung, Y., Jeong, H., Barabási, A.L.: Modeling the internet’s large-scale topology. Proc. Natl. Acad. Sci. U.S.A. 99(21), 13382–13386 (2002)CrossRefGoogle Scholar
  43. 43.
    Tobler, W.R.: A computer movie simulating urban growth in the detroit region. Econ. Geogr. 46, 234–240 (1970)CrossRefGoogle Scholar
  44. 44.
    Trafiklab: GTFS Sverige. https://www.trafiklab.se. Accessed 28 April 2013 (2013)
  45. 45.
    de Verdière, Y.C.: Sur un nouvel invariant des graphes et un critère de planarité. J. Comb. Theor. Ser. B 50(1), 11–21 (1990)CrossRefzbMATHGoogle Scholar
  46. 46.
    Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114(1), 570–590 (1937)CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Walski, T.M., Brill, E.D., Gessler, J., Goulter, I.C.: Battle of the network models: epilogue. J. Water Resour. Plann. Manag. 113(2), 191–203 (1987)CrossRefGoogle Scholar
  48. 48.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  49. 49.
    Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9), 1617–1622 (1988)CrossRefGoogle Scholar
  50. 50.
    Whitney, H.: Non-separable and planar graphs. Proc. Nat. Acad. Sci. U.S.A. 17(2), 125–127 (1931)CrossRefzbMATHGoogle Scholar
  51. 51.
    Xulvi-Brunet, R., Sokolov, I.M.: Evolving networks with disadvantaged long-range connections. Phys. Rev. E 66, 026118 (2002)CrossRefGoogle Scholar
  52. 52.
    Zipf, G.K.: The hypothesis of the minimum equation as a unifying social principle: with attempted synthesis. Am. Sociol. Rev. 12(6), 627–650 (1947)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Vienna University of TechnologyViennaAustria

Personalised recommendations