A Wayfinding Grammar Based on Reference System Transformations

  • Peter KieferEmail author
  • Simon Scheider
  • Ioannis Giannopoulos
  • Paul Weiser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9368)


Wayfinding models can be helpful in describing, understanding, and technologically supporting the processes involved in navigation. However, current models either lack a high degree of formalization, or they are not holistic and perceptually grounded, which impedes their use for cognitive engineering. In this paper, we propose a novel formalism that covers the core wayfinding processes, yet is modular in nature by allowing for open slots for those spatial cognitive processes that are modifiable, or not yet well understood. Our model is based on a formal grammar grounded in spatial reference systems and is both interpretable in terms of observable behavior and executable to allow for empirical testing as well as the simulation of wayfinding.


Wayfinding Navigation Spatial cognitive processes Formal grammar Reference systems 


  1. 1.
    Anderson, J.R., Matessa, M., Lebiere, C.: ACT-R: a theory of higher level cognition and its relation to visual attention. Hum.-Comput. Interact. 12(4), 439–462 (1997)CrossRefGoogle Scholar
  2. 2.
    Arthur, P., Passini, R.: How the wayfinding process works. In: Wayfinding: People, Signs, and Architecture, pp. 26–39. McGraw-Hill, New York (1992)Google Scholar
  3. 3.
    Downs, R.M., Stea, D.: The world in the head. In: Maps in Minds: Reflections on Cognitive Mapping, chap. 4, pp. 125–135. Harper & Row Series in Geography, Harper & Row (1977)Google Scholar
  4. 4.
    Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13, 94–102 (1970)CrossRefzbMATHGoogle Scholar
  5. 5.
    Frank, A.U.: Formal models for cognition - taxonomy of spatial location description and frames of reference. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, pp. 293–312. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  6. 6.
    Giannopoulos, I., Kiefer, P., Raubal, M., Richter, K.-F., Thrash, T.: Wayfinding decision situations: a conceptual model and evaluation. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds.) GIScience 2014. LNCS, vol. 8728, pp. 221–234. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Golledge, R.G.: Place recognition and wayfinding: making sense of space. Geoforum 23, 199–214 (1992)CrossRefGoogle Scholar
  8. 8.
    Golledge, R.G.: Human wayfinding and cognitive maps. In: Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, chap. 1, pp. 5–45. The Johns Hopkins University Press (1999)Google Scholar
  9. 9.
    Gopal, S., Klatzky, R.L., Smith, T.R.: Navigator: a psychologically based model of environmental learning through navigation. J. Environ. Psychol. 9(4), 309–331 (1989)CrossRefGoogle Scholar
  10. 10.
    Hahn, J., Weiser, P.: A quantum formalization for communication coordination problems. In: Atmanspacher, H., Bergomi, C., Filk, T., Kitto, K. (eds.) QI 2014. LNCS, vol. 8951, pp. 177–188. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  11. 11.
    Haken, H., Portugali, J.: Synergetics, inter-representation networks and cognitive maps. In: The Construction of Cognitive Maps, pp. 45–67. Springer (1996)Google Scholar
  12. 12.
    Hutchins, E.: Distributed cognition. In: International Encyclopedia of the Social and Behavioral Sciences. Elsevier Science (2000)Google Scholar
  13. 13.
    Hutchins, E.L.: Cognition in the Wild, 2nd edn. MIT press, Cambridge (1996)Google Scholar
  14. 14.
    Kesner, R.P., Creem-Regehr, S.H.: Parietal contributions to spatial cognition. In: Handbook of Spatial Cognition, pp. 35–63. American Psychological Association (2013)Google Scholar
  15. 15.
    Kiefer, P.: Spatially constrained grammars for mobile intention recognition. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 361–377. Springer, Heidelberg (2008) Google Scholar
  16. 16.
    Kiefer, P.: Mobile Intention Recognition. Springer, New York (2011)zbMATHGoogle Scholar
  17. 17.
    Kiefer, P., Giannopoulos, I.: Gaze map matching: mapping eye tracking data to geographic vector features. In: Proceedings of the 20th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 359–368. ACM, New York (2012)Google Scholar
  18. 18.
    Kiefer, P., Giannopoulos, I., Raubal, M.: Using eye movements to recognize activities on cartographic maps. In: Proceedings of the 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 498–501. ACM, New York (2013)Google Scholar
  19. 19.
    Kiefer, P., Giannopoulos, I., Raubal, M.: Where am I? investigating map matching during self-localization with mobile eye tracking in an urban environment. Trans. GIS 18(5), 660–686 (2014)CrossRefGoogle Scholar
  20. 20.
    Kitchin, R.M.: Cognitive maps: what are they and why study them? J. Environ. Psychol. 14(1), 1–19 (1994)CrossRefGoogle Scholar
  21. 21.
    Klippel, A., Tappe, H., Kulik, L., Lee, P.U.: Wayfinding choremes - a language for modeling conceptual route knowledge. J. Vis. Lang. Comput. 16(4), 311–329 (2005)CrossRefGoogle Scholar
  22. 22.
    Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theor. 2, 127–145 (1968)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Kuhn, W.: Semantic reference systems. Int. J. Geogr. Inf. Sci. 17(5), 405–409 (2003)CrossRefGoogle Scholar
  24. 24.
    Kuipers, B.: Modeling spatial knowledge. Cogn. Sci. 2(2), 129–153 (1978)CrossRefGoogle Scholar
  25. 25.
    Leiser, D., Zilbershatz, A.: The traveller: a computational model of spatial network learning. Environ. Behav. 21(4), 435–463 (1989)CrossRefGoogle Scholar
  26. 26.
    Levinson, S.C.: Space in Language and Cognition: Explorations in Cognitive Diversity, vol. 5. Cambridge University Press, Cambridge (2003) CrossRefGoogle Scholar
  27. 27.
    Logan, G.D., Sadler, D.D.: A computational analysis of the apprehension of spatial relations. In: Language and Space. Language, Speech, and Communication, pp. 493–529. MIT Press (1996)Google Scholar
  28. 28.
    Lohmann, K., Eschenbach, C., Habel, C.: Linking spatial haptic perception to linguistic representations: assisting utterances for tactile-map explorations. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 328–349. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  29. 29.
    Loomis, J.M., Klatzky, R.L., Giudice, N.A.: Representing 3D space in working memory: spatial images from vision, hearing, touch, and language. In: Multisensory Imagery, pp. 131–155. Springer (2013)Google Scholar
  30. 30.
    MacEachren, A.M.: How Maps Work: Representation, Visualization, and Design. Guilford Press, New York (1995) Google Scholar
  31. 31.
    McNamara, T.P.: Spatial memory: properties and organization. In: Handbook of Spatial Cognition, pp. 173–190. American Psychological Association (2013)Google Scholar
  32. 32.
    Montello, D.R.: Navigation. In: Cambridge Handbook of Visuospatial Thinking, pp. 257–294. Cambridge University Press (2005)Google Scholar
  33. 33.
    Montello, D.R.: Scale and multiple psychologies of space. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 312–321. Springer, Heidelberg (1993) CrossRefGoogle Scholar
  34. 34.
    Passini, R.: Wayfinding: a conceptual framework. Urban Ecol. 5(1), 17–31 (1981)CrossRefGoogle Scholar
  35. 35.
    Raubal, M., Worboys, M.F.: A formal model of the process of wayfinding in built environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 381–399. Springer, Heidelberg (1999) Google Scholar
  36. 36.
    Richter, K.F., Winter, S.: Landmarks. Springer, Switzerland (2014)CrossRefGoogle Scholar
  37. 37.
    Scheider, S.: Grounding Geographic Information in Perceptual Operations. Frontiers in Artifical Intelligence and Applications, vol. 244. IOS Press, Amsterdam (2012) Google Scholar
  38. 38.
    Schlieder, C.: Representing the meaning of spatial behavior by spatially grounded intentional systems. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 30–44. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  39. 39.
    Shelton, A.L., McNamara, T.P.: Systems of spatial reference in human memory. Cogn. Psychol. 43(4), 274–310 (2001)CrossRefGoogle Scholar
  40. 40.
    Simmering, V.R., Schutte, A.R., Spencer, J.P.: Generalizing the dynamic field theory of spatial cognition across real and developmental time scales. Brain Res. 1202, 68–86 (2008)CrossRefGoogle Scholar
  41. 41.
    Smith, T.R., Pellegrino, J.W., Golledge, R.G.: Computational process modeling of spatial cognition and behavior. Geogr. Anal. 14(4), 305–325 (1982)CrossRefGoogle Scholar
  42. 42.
    Tversky, B.: Cognitive maps, cognitive collages, and spatial mental models. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 14–24. Springer, Heidelberg (1993) CrossRefGoogle Scholar
  43. 43.
    Weiser, P.: A Pragmatic Communication Model for Way-finding Instructions. Ph.D. thesis, Vienna University of Technology. Department of Geodesy and Geoinformation. Research Group Geoinformation (2014)Google Scholar
  44. 44.
    Weiser, P., Frank, A.U.: Cognitive transactions – a communication model. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 129–148. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  45. 45.
    Wiener, J.M., Büchner, S.J., Hölscher, C.: Taxonomy of human wayfinding tasks: a knowledge-based approach. Spat. Cogn. Comput. 9(2), 152–165 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Peter Kiefer
    • 1
    Email author
  • Simon Scheider
    • 1
  • Ioannis Giannopoulos
    • 1
  • Paul Weiser
    • 1
  1. 1.Institute of Cartography and GeoinformationETH ZürichZürichSwitzerland

Personalised recommendations