Advertisement

Preconditioners Based on “Parareal” Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization

  • Stefan Ulbrich
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 9)

Abstract

We consider optimization problems governed by time-dependent parabolic PDEs and discuss the construction of parallel preconditioners based on the parareal method for the solution of quadratic subproblems which arise within SQP methods. In the case without control constraints, the optimality system of the subproblem is directly reduced to a symmetric PDE system, for which we propose a preconditioner that decouples into a forward and backward PDE solve. In the case of control constraints we apply a semismooth Newton method and apply the preconditioner to the semismooth Newton system. We prove bounds on the condition number of the preconditioned system which shows no or only a weak dependence on the size of regularization parameters for the control. We propose to use the parareal time domain decomposition method for the forward and backward PDE solves within the PDE preconditioner to construct an efficient parallel preconditioner. Numerical results show the efficiency of the approach.

References

  1. 1.
    Bal, G.: On the convergence and the stability of the parareal algorithm to solve partial differential equations. In: Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 425–432. Springer, Berlin (2005)Google Scholar
  2. 2.
    Bal, G., Maday, Y.: A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put. In: Recent Developments in Domain Decomposition Methods (Zürich, 2001). Lecture Notes in Computational Science and Engineering, vol. 23, pp. 189–202. Springer, Berlin (2002)Google Scholar
  3. 3.
    Battermann, A., Heinkenschloss, M.: Preconditioners for Karush-Kuhn-Tucker matrices arising in the optimal control of distributed systems. In: Control and Estimation of Distributed Parameter Systems (Vorau, 1996). International Series of Numerical Mathematics, vol. 126, pp. 15–32. Birkhäuser, Basel (1998)Google Scholar
  4. 4.
    Battermann, A., Sachs, E.W.: Block preconditioners for KKT systems in PDE-governed optimal control problems. In: Fast Solution of Discretized Optimization Problems (Berlin, 2000). International Series of Numerical Mathematics, vol. 138, pp. 1–18. Birkhäuser, Basel (2001)Google Scholar
  5. 5.
    Borzì, A.: Smoothers for control- and state-constrained optimal control problems. Comput. Vis. Sci. 11(1), 59–66 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Borzi, A., Schulz, V.: Multigrid methods for PDE optimization. SIAM Rev. 51(2), 361–395 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dollar, H.S., Gould, N.I.M., Stoll, M., Wathen, A.J.: Preconditioning saddle-point systems with applications in optimization. SIAM J. Sci. Comput. 32(1), 249–270 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58(9), 1397–1434 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fischer, P.F., Hecht, F., Maday, Y.: A parareal in time semi-implicit approximation of the Navier-Stokes equations. In: Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 433–440. Springer, Berlin (2005)Google Scholar
  10. 10.
    Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gong, W., Hinze, M., Zhou, Z.J.: Space-time finite element approximation of parabolic optimal control problems. J. Numer. Math. 20(2), 111–145 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Heinkenschloss, M.: A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems. J. Comput. Appl. Math. 173(1), 169–198 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Heinkenschloss, M., Vicente, L.N.: Analysis of inexact trust-region SQP algorithms. SIAM J. Optim. 12(2), 283–302 (2001/2002)Google Scholar
  14. 14.
    Herzog, R., Sachs, E.: Preconditioned conjugate gradient method for optimal control problems with control and state constraints. SIAM J. Matrix Anal. Appl. 31(5), 2291–2317 (2010). doi: 10.1137/090779127. http://dx.doi.org/10.1137/090779127
  15. 15.
    Hintermüller, M., Hinze, M.: A SQP-semismooth Newton-type algorithm applied to control of the instationary Navier-Stokes system subject to control constraints. SIAM J. Optim. 16(4), 1177–1200 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003) (2002)Google Scholar
  17. 17.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, New York (2009)Google Scholar
  18. 18.
    Lions, J.L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps “pararéel”. C. R. Acad. Sci. Paris Sér. I Math. 332(7), 661–668 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Maday, Y., Turinici, G.: A parareal in time procedure for the control of partial differential equations. C. R. Math. Acad. Sci. Paris 335(4), 387–392 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mathew, T.P., Sarkis, M., Schaerer, C.E.: Analysis of block parareal preconditioners for parabolic optimal control problems. SIAM J. Sci. Comput. 32(3), 1180–1200 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pearson, J.W., Stoll, M., Wathen, A.J.: Preconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function. Numer. Linear Algebra Appl. 21(1), 81–97 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rees, T., Stoll, M., Wathen, A.: All-at-once preconditioning in PDE-constrained optimization. Kybernetika (Prague) 46(2), 341–360 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Schiela, A., Günther, A.: An interior point algorithm with inexact step computation in function space for state constrained optimal control. Numer. Math. 119(2), 373–407 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schiela, A., Ulbrich, S.: Operator preconditioning for a class of inequality constrained optimal control problems. SIAM J. Optim. 24(1), 435–466 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29(3), 752–773 (2007) (electronic)Google Scholar
  26. 26.
    Staff, G.A., Rønquist, E.M.: Stability of the parareal algorithm. In: Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, vol. 40, pp. 449–456. Springer, Berlin (2005)Google Scholar
  27. 27.
    Stoll, M., Wathen, A.: Preconditioning for partial differential equation constrained optimization with control constraints. Numer. Linear Algebra Appl. 19(1), 53–71 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Tröltzsch, F.: On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. SIAM J. Control Optim. 38(1), 294–312 (1999) (electronic)Google Scholar
  29. 29.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence, RI (2010). Translated from the 2005 German original by Jürgen SprekelsGoogle Scholar
  30. 30.
    Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13(3), 805–842 (2003) (2002)Google Scholar
  31. 31.
    Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM Series on Optimization, vol. 11. Society for Industrial and Applied Mathematics (SIAM)/Mathematical Optimization Society, Philadelphia (2011)Google Scholar
  32. 32.
    Ulbrich, M., Ulbrich, S.: Primal-dual interior-point methods for PDE-constrained optimization. Math. Program. 117(1–2, Ser. B), 435–485 (2009)Google Scholar
  33. 33.
    Ziems, J.C., Ulbrich, S.: Adaptive multilevel inexact SQP methods for PDE-constrained optimization. SIAM J. Optim. 21(1), 1–40 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71(238), 479–505 (2002) (electronic)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations