Advertisement

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools

  • Nicola Cavallini
  • Oliver Weeger
  • M. Sebastian Pauletti
  • Massimiliano Martinelli
  • Pablo Antolín
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 107)

Abstract

igatools is a newly released library for operators assembly in isogeometric analysis. The library, which is object oriented designed and written in C++11, is general purpose, therefore it is not devoted to any specific application. In this paper we show that such a design makes igatools an effective tool in assembling isogeometric discretizations of sophisticated differential operators. This effectiveness will be demonstrated showing code snippets relating one-to-one with the operators written on paper. To embrace a wide audience, applications from nonlinear incompressible solid and fluid mechanics will be addressed. In both cases we are going to deal with mixed isogeometric formulations. The applicative nature of this paper will be stressed solving industrially relevant tests cases.

Keywords

Isogeometric Analysis Mixed Element Code Snippet Global Matrix Template Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to C. Lovadina for the useful discussion. N. Cavallini and O. Weeger have been supported by the TERRIFIC project, European Community’s Seventh Framework Programme, Grant Agreement 284981 Call FP7-2011-NMP-ICT-FoF. In all the experiments in this paper we used linear algebra packages from deal.II [2, 3].

References

  1. 1.
    F. Auricchio, L. Beirão da Veiga, C. Lovadina, A. Reali, R.L. Taylor, P. Wriggers, Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52(5), 1153–1167 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    W. Bangerth, R. Hartmann, G. Kanschat, deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)Google Scholar
  3. 3.
    W. Bangerth, T. Heister, G. Kanschat, deal.II Differential Equations Analysis Library, Technical Reference, http://www.dealii.org
  4. 4.
    Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, T.W. Sederberg, Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199(5–8), 229–263 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Y. Bazilevs, C. Michler, V.M. Calo, T.J.R. Hughes, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput. Methods Appl. Mech. Eng. 199(13–16), 780–790 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    P. Becker, Working draft, standard for programming language C++. Technical Report N3242=11-0012, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, Feb 2011Google Scholar
  8. 8.
    D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics (Springer, London, 2013)Google Scholar
  9. 9.
    D. Boffi, C. Lovadina, Analysis of new augmented lagrangian formulations for mixed finite element schemes. Numerische Mathematik 75(4), 405–419 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. Bressan, G. Sangalli, Isogeometric discretizations of the Stokes problem: stability analysis by the macro element technique. IMA J. Numer. Anal. (2012)Google Scholar
  11. 11.
    A. Buffa, D. Cho, G. Sangalli, Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput. Methods Appl. Mech. Eng. 199(23–24), 1437–1445 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    R.D. Cook, Improved two-dimensional finite element. J. Struct. Div. 100, 1851–1863 (1974)Google Scholar
  13. 13.
    J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195(41–43), 5257–5296 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    T. Dokken, T. Lyche, K.F. Pettersen, Locally refinable splines over box-partitions. Technical report, SINTEF, Feb 2012Google Scholar
  15. 15.
    M. Dörfel, B. Jüttler, B. Simeon, Adaptive isogeometric analysis by local h-refinement with T-splines. Comput. Methods Appl. Mech. Eng. 199(5–8), 264–275 (2009)MathSciNetMATHGoogle Scholar
  16. 16.
    T. Elguedj, Y. Bazilevs, V.M. Calo, T.J.R. Hughes, B-bar and f-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity based on higher-order NURBS elements. Comput. Methods Appl. Mech. Eng. 197, 2732–2762 (2008)CrossRefMATHGoogle Scholar
  17. 17.
    H.C. Elman, D.J. Silvester, A.J. Wathen, Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations. Numer. Math. 90, 665–688 (2000)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    H.C. Elman, D.J. Silvester, A.J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation (Oxford University Press, Oxford, 2005)MATHGoogle Scholar
  19. 19.
    J.A. Evans, T.J.R. Hughes, Isogeometric divergence-conforming B-spline for the steady Navier-Stokes equations. Math. Models Methods Appl. Sci. 23(8), 1421–1478 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    D.R. Forsey, R.H. Bartels, Hierarchical B-spline refinement, in Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’88), Atlanta, 1988, pp. 205–212Google Scholar
  21. 21.
    U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)CrossRefMATHGoogle Scholar
  22. 22.
    C. Giannelli, B. Jüttler, H. Speleers, THB–splines: the truncated basis for hierarchical splines. Comput. Aided Geom. D. 29, 485–498 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    R. Glowinski, P.G. Ciarlet, J.L. Lions, Numerical Methods for Fluids. Handbook of Numerical Analysis, vol. 3 (Elsevier, Amsterdam, 2002)Google Scholar
  24. 24.
    T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    igatools 0.3.0, An isogeometric analisys tool library – documentation and manual, Oct 2014Google Scholar
  26. 26.
    ISO/IEC 14882:2011 – Information technology – programming languages – C++, 2011Google Scholar
  27. 27.
    J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, K.-U. Bletzinger, Kirchhoff-Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199, 2403–2416 (2010)CrossRefMATHGoogle Scholar
  28. 28.
    K.M. Mathisen, K.M. Okstad, T. Kvamsdal, S.B. Raknes, Isogeometric analysis of finite deformation nearly incompressible solids. Rakenteiden Mekaniikka (J. Struct. Mech.) 44(3), 260–278 (2011)Google Scholar
  29. 29.
    M.S. Pauletti, M. Martinelli, N. Cavallini, P. Antolin, Igatools: an isogeometric analysis library. I.M.A.T.I.-C.N.R., 2014, pp. 1–27Google Scholar
  30. 30.
    L.A. Piegl, W. Tiller, The NURBs Book. Monographs in Visual Communication Series (Springer, Berlin/New York, 1997)Google Scholar
  31. 31.
    L.L. Schumaker, Spline Functions: Basic Theory. Cambridge Mathematical Library, 3rd edn. (Cambridge University Press, Cambridge, 2007)Google Scholar
  32. 32.
    M.A. Scott, X. Li, T.W. Sederberg, T.J.R. Hughes, Local refinement of analysis-suitable T-splines. Comput. Methods Appl. Mech. Eng. 213–216, 206–222 (2012)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    R. Taylor, Isogeometric analysis of nearly incompressible solids. Int. J. Numer. Methods Eng. 87(1–5), 273–288 (2010)MathSciNetMATHGoogle Scholar
  34. 34.
    A.-V. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 3554–3567 (2011)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    O. Weeger, U. Wever, B. Simeon, Isogeometric analysis of nonlinear Euler Bernoulli beam vibrations. Nonlinear Dyn. 72(4), 813–835 (2013)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    P. Wriggers, Nonlinear Finite Element Methods (Springer, Berlin, 2008)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicola Cavallini
    • 1
  • Oliver Weeger
    • 2
  • M. Sebastian Pauletti
    • 3
  • Massimiliano Martinelli
    • 4
  • Pablo Antolín
    • 5
  1. 1.Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly
  2. 2.Faculty of MathematicsTU KaiserslauternKaiserslauternGermany
  3. 3.Instituto de Matemática Aplicada del Litoral (IMAL)Consejo Nacional de Investigaciones científicas y técnicas (CONICET)Santa FeArgentina
  4. 4.Istituto di Matematica Applicata e Tecnologie Informatiche (IMATI)Consiglio Nazionale delle Ricerche (CNR)PaviaItaly
  5. 5.Dipartimento di Ingegneria Civile ed ArchitetturaUniversità degli Studi di PaviaPaviaItaly

Personalised recommendations