Algorithmic Aspects of Isogeometric Shape Optimization

  • Daniela FußederEmail author
  • Bernd Simeon
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 107)


Shape optimization is concerned about finding optimal designs under the aspect of some cost criteria often involving the solution of a partial differential equation (PDE) over the afore said unknown shape. In general, industrial cases involve a geometric model from Computer Aided Design (CAD). However, solving PDEs requires an analysis suitable working model, typically a Finite Element (FEM) triangulation. Hence, some of the geometric properties known from the CAD model may be lost during this format change. Therefore, we employ isogeometric analysis (IGA) instead, which has a tighter connection between geometry, simulation and shape optimization. In this paper, we present a self-contained treatment of gradient based shape optimization method with isogeometric analysis, focusing on algorithmic and practical aspects like computation of shape gradients in an IGA formulation and updating B-spline and NURBS geometries.


Shape Optimization Variable Weight Sequential Quadratic Programming Isogeometric Analysis Shape Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Utz Wever from Siemens AG, Corporate Technology, for many helpful discussions on the subject.

This work was supported by the European Union within the Project 284981 “TERRIFIC” (7th Framework Program).


  1. 1.
    Y. Bazilevs, L. Beirão da Veiga, J. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L. Blanchard, R. Duvigneau, A.V. Vuong, B. Simeon, Shape gradient for isogeometric structural design. J. Optim. Theory Appl. 161(2), 1–7 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    P.B. Bornemann, F. Cirak, A subdivision-based implementation of the hierarchical B-spline finite element method. Comput. Methods Appl. Mech. Eng. 253, 584–598 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    C. De Boor, A Practical Guide to Splines, vol. 27 (Springer, New York, 2001)zbMATHGoogle Scholar
  5. 5.
    M.C. Delfour, J.P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Advances in Design and Control, 2nd edn. (SIAM, Philadelphia, 2011)Google Scholar
  6. 6.
    D. Fußeder, A.V. Vuong, B. Simeon, Fundamental aspects of shape optimization in the context of isogeometric analysis. Comput. Methods Appl. Mech. Eng. 286, 313–331 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Haslinger, P. Neittaanmäki, Finite Element Approximation for Optimal Shape Design: Theory and Applications (Wiley, Chichester/New York, 1988)zbMATHGoogle Scholar
  8. 8.
    T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    T.J.R. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199, 301–313 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S.G. Johnson, The NLOPT nonlinear-optimization package (2014), [Online; Accessed 10 Oct 2014]
  11. 11.
    J. Kiendl, R. Schmidt, R. Wüchner, K.U. Bletzinger, Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Comput. Methods Appl. Mech. Eng. 274, 148–167 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    MATLAB, Release 2012a (2012), “The MathWorks Inc.”Google Scholar
  13. 13.
    F. Murat, J. Simon, Etude de problèmes d’optimal design, in Optimization Techniques Modeling and Optimization in the Service of Man Part 2 (Springer, Berlin/Heidelberg, 1976), pp. 54–62CrossRefGoogle Scholar
  14. 14.
    D.M. Nguyen, Isogeometric analysis and shape optimization in electromagnetism. Ph.D. thesis, Technical University of Denmark, Feb 2012Google Scholar
  15. 15.
    D.M. Nguyen, A. Evgrafov, J. Gravesen, Isogeometric shape optimization for electromagnetic scattering problems. Prog. Electromagn. Res. B 45, 117–146 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Nocedal, S.J. Write, Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. (Springer, New York, 2006)Google Scholar
  17. 17.
    L. Piegl, W. Tiller, The NURBS Book (Springer, New York, 1995)CrossRefzbMATHGoogle Scholar
  18. 18.
    O. Pironneau, Optimal Shape Design for Elliptic Systems (Springer, New York, 1983)zbMATHGoogle Scholar
  19. 19.
    B. Protas, T.R. Bewley, G. Hagen, A computational framework for the regularization of adjoint analysis in multiscale PDE systems. J. Comput. Phys. 195, 49–89 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    X. Qian, Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput. Methods Appl. Mech. Eng. 199, 2059–2071 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    L.L. Schumaker, Spline Functions: Basic Theory (Wiley, New York, 1981)zbMATHGoogle Scholar
  22. 22.
    J. Sokolowski, J.P. Zolésio, Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16 (Springer, Berlin/New York, 1992)Google Scholar
  23. 23.
    K. Svanberg, A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    S. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951)zbMATHGoogle Scholar
  25. 25.
    A.V. Vuong, Adaptive Hierarchical Isogeometric Finite Element Methods (Springer, Wiesbaden, 2012)CrossRefzbMATHGoogle Scholar
  26. 26.
    A. Wächter, L.T. Biegler, On the implementation of a primal-dual Interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    W.A. Wall, M.A. Frenzel, C. Cyron, Isogeometric structural shape optimization. Comput. Methods Appl. Mech. Eng. 197, 2976–2988 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis. Comput. Aided Des. 45(4), 812–821 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Technische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations