The Isogeometric Segmentation Pipeline

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 107)


We present a pipeline for the conversion of 3D models into a form suitable for isogeometric analysis (IGA). The input into our pipeline is a boundary represented 3D model, either as a triangulation or as a collection of trimmed non-uniform rational B-spline (NURBS) surfaces. The pipeline consists of three stages: computer aided design (CAD) model reconstruction from a triangulation (if necessary); segmentation of the boundary-represented solid into topological hexahedra; and volume parameterization. The result is a collection of volumetric NURBS patches. In this paper we discuss our methods for the three stages, and demonstrate the suitability of the result for IGA by performing stress simulations with examples of the output.


Non-uniform Rational B-splines (NURBS) Isogeometric Analysis (IGA) Boundary Representation Hexahedra Trimmed NURBS Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been funded by the European Commission projects TERRIFIC (Grant Agreement 284981), EXAMPLE (Grant Agreement 324340) and ITN INSIST (Grant Agreement 289361), and the Austrian Science Fund (FWF) project Geometry and Simulation (Project Number S 117). We thank Martin Schifko at Engineering Center Steyr and Stefan Boschert at Siemens Corporate Technology for some of the input data used in our work.


  1. 1.
    J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs,Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, Chichester/Hoboken, 2009)CrossRefGoogle Scholar
  2. 2.
    M.S. Floater, Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des.14(3), 231–250 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M.S. Floater, Mean value coordinates. Comput. Aided Geom. Des.20(1), 19–27 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D. Großmann, B. Jüttler, H. Schlusnus, J. Barner, A.-V. Vuong, Isogeometric simulation of turbine blades for aircraft engines. Comput. Aided Geom. Des.29(7), 519–531 (2012). Geometric Modeling and Processing 2012Google Scholar
  5. 5.
    S. Han, J. Xia, Y. He, Constructing hexahedral shell meshes via volumetric polycube maps. Comput.-Aided Des.43(10), 1222–1233 (2011)CrossRefGoogle Scholar
  6. 6.
    B. Jüttler, M. Kapl, D.-M. Nguyen, Q. Pan, M. Pauley, Isogeometric segmentation: the case of contractible solids without non-convex edges. Comput.-Aided Des.57, 74–90 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    U. Langer, I. Toulopoulos, Analysis of multipatch discontinuous Galerkin IgA approximations to elliptic boundary value problems. Technical Report 1408.0182,, 2014Google Scholar
  8. 8.
    Y. Lu, R. Gadh, T.J. Tautges, Feature based hex meshing methodology: feature recognition and volume decomposition. Comput.-Aided Des.33(3), 221–232 (2001)CrossRefGoogle Scholar
  9. 9.
    T. Martin, E. Cohen, Volumetric parameterization of complex objects by respecting multiple materials. Comput. Graph.34(3), 187–197 (2010). Shape Modelling International (SMI) Conference 2010Google Scholar
  10. 10.
    T. Martin, E. Cohen, R.M. Kirby, Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Comput. Aided Geom. Des.26(6), 648–664 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T. Nguyen, B. Jüttler, Parameterization of contractible domains using sequences of harmonic maps, inCurves and surfaces. Lecture Notes in Computer Science, vol. 6920 (Springer, Heidelberg, 2012), pp. 501–514Google Scholar
  12. 12.
    D.-M. Nguyen, M. Pauley, B. Jüttler, Isogeometric segmentation. Part II: on the segmentability of contractible solids with non-convex edges. Graph. Models76(5), 426–439 (2014). Geometric Modeling and Processing 2014Google Scholar
  13. 13.
    D.-M. Nguyen, M. Pauley, B. Jüttler, Isogeometric segmentation: construction of auxiliary curves. Comput.-Aided Des.70, 89–99 (2016). Proceedings of GDSPM 2015, conditionally acceptedGoogle Scholar
  14. 14.
    M. Nieser, U. Reitebuch, K. Polthier, CubeCover – parameterization of 3D volumes. Comput. Graph. Forum30(5), 1397–1406 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Sheffer, M. Etzion, A. Rappoport, M. Bercovier, Hexahedral mesh generation using the embedded Voronoi graph, inProceedings of the 7th International Meshing Roundtable, Sandia National Laboratories (1999), pp. 347–364Google Scholar
  16. 16.
    B. Strodthoff, M. Schifko, B. Jüttler, Horizontal decomposition of triangulated solids for the simulation of dip-coating processes. Comput.-Aided Des.43(12), 1891–1901 (2011)CrossRefGoogle Scholar
  17. 17.
    T.J. Tautges, T. Blacker, S.A. Mitchell, The whisker weaving algorithm: a connectivity-based method for constructing all-hexahedral finite element meshes. Int. J. Numer. Methods Eng.39(19), 3327–3349 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    T. Varady, R. Martin, Reverse engineering, inHandbook of Computer Aided Geometric Design, ed. by G. Farin, J. Hoschek, M.-S. Kim (North-Holland, Amsterdam, 2002), pp. 651–681CrossRefGoogle Scholar
  19. 19.
    X. Wang, X. Qian, An optimization approach for constructing trivariateB-spline solids. Comput.-Aided Des.46, 179–191 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    W. Wang, Y. Zhang, L. Liu, T.J.R. Hughes, Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology. Comput.-Aided Des.45(2), 351–360 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. White, L. Mingwu, S.E. Benzley, G.D. Sjaardema, Automated hexahedral mesh generation by virtual decomposition, in Proceedings of the 4th International Meshing Roundtable, Sandia National Laboratories (1995), pp. 165–176Google Scholar
  22. 22.
    G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications. Comput.-Aided Des.45(2), 395–404 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    W. Yu, K. Zhang, S. Wan, X. Li, Optimizing polycube domain construction for hexahedral remeshing. Comput.-Aided Des.46, 58–68 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Y. Zhang, C. Bajaj, Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Comput. Methods Appl. Mech. Eng.195, 942–960 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Y. Zhang, W. Wang, T.J.R. Hughes, Solid T-spline construction from boundary representations for genus-zero geometry. Comput. Methods Appl. Mech. Eng.249/252, 185–197 (2012)Google Scholar
  26. 26.
    Y. Zhang, W. Wang, T.J.R. Hughes, Conformal solid T-spline construction from boundary T-spline representations. Comput. Mech.51(6), 1051–1059 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria
  2. 2.Faculty of MathematicsTU KaiserslauternKaiserslauternGermany

Personalised recommendations