Advertisement

Multipatch Discontinuous Galerkin Isogeometric Analysis

  • Ulrich Langer
  • Angelos Mantzaflaris
  • Stephen E. Moore
  • Ioannis Toulopoulos
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 107)

Abstract

Isogeometric Analysis (IgA) uses the same class of basis functions for both representing the geometry of the computational domain and approximating the solution of the boundary value problem under consideration. In practical applications, geometrical patches are used in order to get flexibility in the geometrical representation. This multi-patch representation corresponds to a decomposition of the computational domain into non-overlapping subdomains also called patches in the geometrical framework. We will present discontinuous Galerkin (dG) methods that allow for discontinuities across the subdomain (patch) boundaries. The required interface conditions are weakly imposed by the dG terms associated with the boundary of the subdomains. The construction and the corresponding discretization error analysis of such dG multi-patch IgA schemes is given for heterogeneous diffusion model problems in volumetric 2d and 3d domains as well as on open and closed surfaces. The theoretical results are confirmed by numerous numerical experiments which have been performed in G+SMO. The concept and the main features of the IgA library G +SMO are also described.

Keywords

Closed Surface Diffusion Problem Isogeometric Analysis Mesh Grade Finite Element Analysis Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by the Research Network “Geometry + Simulation” (NFN S117) funded by the Austrian Science Fund (FWF) under the grand S117-03.

References

  1. 1.
    R.A. Adams, J.J.F. Fournier, Sobolev Spaces Pure and Applied Mathematics, vol. 140, 2nd edn. (Elsevier/Academic Press, Amsterdam, 2003)Google Scholar
  2. 2.
    P. Antonietti, A. Dedner, P. Madhavan, S. Stangalino, B. Stinner, M. Verani, High order discontinuous Galerkin methods on surfaces. SIAM J. Numer. Anal. 53(2), 1145–1171 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    T. Apel, F. Milde, Comparison of several mesh refinement strategies near edges. Commun. Numer. Methods Eng. 12, 373–381 (1996)CrossRefMATHGoogle Scholar
  4. 4.
    T. Apel, A.-M. Sändig, J.R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19(30), 63–85 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Y. Bazilevs, L. Beirão da Veiga, J. Cottrell, T. Hughes, G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2006)MATHGoogle Scholar
  6. 6.
    L. Beirão da Veiga, A. Buffa, J. Rivas, G. Sangalli, Some estimates for hpk-refinement in isogeometric analysis. Numerische Mathematik 118(2), 271–305 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    L. Beirão da Veiga, D. Cho, G. Sangalli, Anisotropic NURBS approximation in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 209–212(0):1–11 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    J. Cottrell, T. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, Chichester, 2009)CrossRefGoogle Scholar
  9. 9.
    L. Dede, A. Quarteroni, Isogeometric analysis for second order partial differential equations on surfaces. Comput. Methods Appl. Mech. Eng. 284, 807–834 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Dedner, P. Madhavan, Adaptive discontinuous Galerkin methods on surfaces. Numerische Mathematik (2015). doi:  10.1007/s00211-015-0719-4 Google Scholar
  11. 11.
    A. Dedner, P. Madhavan, B. Stinner, Analysis of the discontinuous Galerkin method for elliptic problems on surfaces. IMA J. Numer. Anal. 33(3), 952–973 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    D.A. Di Pietro, A. Ern, Analysis of a discontinuous Galerkin method for heterogeneous diffusion problems with low-regularity solutions. Numer. Methods Partial Differ. Equ. 28(4), 1161–1177 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications, vol. 69 (Springer, Berlin/Heidelberg, 2012)Google Scholar
  14. 14.
    M. Dryja, On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Math. 3, 76–85 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial Differential Equations and Calculus of Variations, ed. by S. Hildebrandt, R. Leis. Lecture Notes in Mathematics, vol. 1357 (Springer, Berlin/Heidelberg, 1988), pp. 142–155Google Scholar
  16. 16.
    G. Dziuk, C. Elliott, Finite elements on evolving surfaces. IMA J. Num. Anal. 27(2), 262–292 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    G. Dziuk, C. Elliott, Surface finite elements for parabolic equations. J. Comput. Math. 25(4), 385–407 (2007)MathSciNetGoogle Scholar
  18. 18.
    G. Dziuk, C. Elliott, Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    L.C. Evans, Partial Differential Equestions. Graduate Studies in Mathematics, vol. 19, 1st edn. (American Mathematical Society, Rhode Island, 1998)Google Scholar
  20. 20.
    P. Grisvard, Elliptic Problems in Nonsmooth Domains. Classics in Applied Mathematics, vol. 69 (SIAM, Philadelphia, 2011)Google Scholar
  21. 21.
    S. Gross, A. Reusken, Numerical Methods for Two-phase Incompressible Flows. Springer Series in Computational Mathematics, vol. 40 (Springer, Berlin/Heidelberg, 2011)Google Scholar
  22. 22.
    G. Guennebaud, B. Jacob et al., Eigen v3. http://eigen.tuxfamily.org (2010)
  23. 23.
    T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    J.W. Jeong, H.-S. Oh, S. Kang, H. Kim, Mapping techniques for isogeometric analysis of elliptic boundary value problems containing singularities. Comput. Methods Appl. Mech. Eng. 254, 334–352 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    B. Jüttler, U. Langer, A. Mantzaflaris, S.E. Moore, W. Zulehner, Geometry + Simulation Modules: Implementing Isogeometric Analysis. PAMM 14(1), 961–962 (2014)CrossRefGoogle Scholar
  26. 26.
    R.B. Kellogg, On the Poisson equation with intersecting interfaces. Appl. Anal. 4, 101–129 (1975)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    S.K. Kleiss, B. Jüttler, W. Zulehner, Enhancing isogeometric analysis by a finite element-based local refinement strategy. Comput. Methods Appl. Mech. Eng. 213–216, 168–182 (2012)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    U. Langer, A. Mantzaflaris, S.E. Moore, I. Toulopoulos, Mesh Grading in Isogeometric Analysis. Comput. Math. Appl. (2015). http://dx.doi.org/10.1016/j.camwa.2015.03.011
  29. 29.
    U. Langer, S. Moore, Discontinuous Galerkin Isogeometric Analysis of elliptic PDEs on surfaces. NFN Technical Report 12, Johannes Kepler University Linz, NFN Geometry and Simulation, Linz, 2014. http://arxiv.org/abs/1402.1185 and accepted for publication in the DD22 proceedings
  30. 30.
    U. Langer, I. Toulopoulos, Analysis of multipatch discontinuous Galerkin IgA approximations to elliptic boundary value problems. RICAM Reports 2014-08, Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, 2014. http://arxiv.org/abs/1408.0182
  31. 31.
    A. Mantzaflaris, B. Jüttler, Exploring matrix generation strategies in isogeometric analysis, in Mathematical Methods for Curves and Surfaces, ed. by M. Floater, T. Lyche, M.-L. Mazure, K. Mørken, L. Schumaker. Lecture Notes in Computer Science, vol. 8177 (Springer, Berlin/Heidelberg, 2014), pp. 364–382Google Scholar
  32. 32.
    A. Mantzaflaris, B. Jüttler, Integration by interpolation and look-up for Galerkin-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 373–400 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    L. Oganesjan, L. Ruchovetz, Variational Difference Methods for the Solution of Elliptic Equations (Isdatelstvo Akademi Nank Armjanskoj SSR, Erevan, 1979) (in Russian)Google Scholar
  34. 34.
    H.-S. Oh, H. Kim, J.W. Jeong, Enriched isogeometric analysis of elliptic boundary value problems in domains with cracks and/or corners. Int. J. Numer. Methods Eng 97(3), 149–180 (2014)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (SIAM, Philadelphia, 2008)CrossRefMATHGoogle Scholar
  36. 36.
    F. Zhang, Y. Xu, F. Chen, Discontinuous Galerkin methods for isogeometric analysis for elliptic equations on surfaces. http://staff.ustc.edu.cn/~yxu/paper/IGA-DG.pdf (2014)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ulrich Langer
    • 1
  • Angelos Mantzaflaris
    • 1
  • Stephen E. Moore
    • 1
  • Ioannis Toulopoulos
    • 1
  1. 1.RICAMLinzAustria

Personalised recommendations