Non-Markovian Performability Evaluation of ERTMS/ETCS Level 3

  • Laura Carnevali
  • Francesco Flammini
  • Marco PaolieriEmail author
  • Enrico Vicario
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9272)


The European Rail Traffic Management System/European Train Control System (ERTMS/ETCS) is an innovative standard introduced to enhance reliability, safety, performance, and interoperability of trans-European railways. In Level 3, the standard replaces fixed-block safety mechanisms, in which only one train at a time is allowed to be in each railway block, with moving blocks: a train proceeds as long as it receives radio messages ensuring that the track ahead is clear of other trains. This mechanism increases line capacity, but relies crucially on the communication link: if messages are lost, the train must stop within a safe deadline even if the track ahead is clear. We develop upon results of the literature to propose an approach for the evaluation of transient availability of the communication channel and probability of train stops due to lost messages. We formulate a non-Markovian model of communication availability and system operation, and leverage solution techniques of the ORIS Tool to provide experimental results in the presence of multiple concurrent activities with non-exponential durations.


European Rail Traffic Management System (ERTMS) European Train Control System (ETCS) Real-time systems design Markov Regenerative Process (MRP) Transient analysis Stochastic state classes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbaneo, C., Flammini, F., Lazzaro, A., Marmo, P., Mazzocca, N., Sanseviero, A.: UML based reverse engineering for the verification of railway control logics. In: Int. Conf. on Dependability of Computer Systems, pp. 3–10. IEEE (2006)Google Scholar
  2. 2.
    Babczyński, T., Magott, J.: Dependability and safety analysis of ETCS communication for ERTMS level 3 using performance statecharts and analytic estimation. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Proceedings of the Ninth International Conference on DepCoS-RELCOMEX. AISC, vol. 286, pp. 37–46. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  3. 3.
    Bernardi, S., Flammini, F., Marrone, S., Mazzocca, N., Merseguer, J., Nardone, R., Vittorini, V.: Enabling the usage of UML in the verification of railway systems: The DAM-rail approach. Reliability Eng. & System Safety 120, 112–126 (2013)CrossRefGoogle Scholar
  4. 4.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. on Software Eng. 17(3), 259–273 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bobbio, A., Telek, M.: Markov regenerative SPN with non-overlapping activity cycles. In: Comp. Perf. and Dependability Symposium, pp. 124–133. IEEE (1995)Google Scholar
  6. 6.
    Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MODEST: A compositional modeling formalism for hard and softly timed systems. IEEE Trans. on Software Eng. 32(10), 812–830 (2006)CrossRefGoogle Scholar
  7. 7.
    Carnevali, L., Grassi, L., Vicario, E.: State-density functions over DBM domains in the analysis of non-Markovian models. IEEE Trans. on Software Eng. 35(2), 178–194 (2009)CrossRefGoogle Scholar
  8. 8.
    Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state space analysis of non-Markovian models. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Performance Evaluation 20(1–3), 337–357 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic process underlying a stochastic Petri net. IEEE Trans. on Software Engineering 20(7), 506–515 (1994)CrossRefGoogle Scholar
  11. 11.
    Ciardo, G., Trivedi, K.: SPNP: stochastic Petri net package. In: Int. Workshop on Petri Nets and Performance Models, pp. 142–151. IEEE (1989)Google Scholar
  12. 12.
    Courtney, T., Gaonkar, S., Keefe, K., Rozier, E., Sanders, W.H.: Möbius 2.3: an extensible tool for dependability, security, and performance evaluation of large and complex system models. In: IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN), pp. 353–358 (2009)Google Scholar
  13. 13.
    Flammini, F., Marrone, S., Iacono, M., Mazzocca, N., Vittorini, V.: A multi-formalism modular approach to ERTMS/ETCS failure modeling. International Journal of Reliability, Quality and Safety Engineering 21(1) (2014)Google Scholar
  14. 14.
    Flammini, F., Marrone, S., Mazzocca, N., Vittorini, V.: Modelling structural reliability aspects of ERTMS/ETCS by fault trees and Bayesian networks. In: Proc. of the European Safety & Reliability Conference, ESREL, vol. 6 (2006)Google Scholar
  15. 15.
    EEIG Ertms User Group. ERTMS/ETCS RAMS System Requirements Specification, UIC, Brussels (1999)Google Scholar
  16. 16.
    EEIG Ertms User Group. ERTMS/ETCS Systems Requirements Specification, UIC, Brussels (1999)Google Scholar
  17. 17.
    Hermanns, H., Jansen, D.N., Usenko, Y.S.: From StoCharts to MoDeST: a comparative reliability analysis of train radio communications. In: Int. Workshop on Software and performance, pp. 13–23. ACM (2005)Google Scholar
  18. 18.
    Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian models using stochastic state classes. Perf. Eval. 69(7–8), 315–335 (2012)CrossRefGoogle Scholar
  19. 19.
    Kelling, C.: A framework for rare event simulation of stochastic Petri nets using RESTART. In: Conf. on Winter Simulation, pp. 317–324. IEEE (1996)Google Scholar
  20. 20.
    Kulkarni, V.G.: Modeling and analysis of stochastic systems. CRC Press (1996)Google Scholar
  21. 21.
    Lindemann, C., Thümmler, A.: Transient analysis of Deterministic and Stochastic Petri Nets with concurrent deterministic transitions. Performance Evaluation 36, 35–54 (1999)CrossRefzbMATHGoogle Scholar
  22. 22.
    Qiu, S., Sallak, M., Schon, W.: Modeling of ERTMS level 2 as an SoS and evaluation of its dependability parameters using statecharts. IEEE Systems Journal 8(4), 1169–1181 (2014)CrossRefGoogle Scholar
  23. 23.
    Miner, A.S., Parker, D.: Symbolic representations and analysis of large probabilistic systems. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 296–338. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  24. 24.
    Glynn, P.W.: A GSMP formalism for discrete-event systems. Proceedings of the IEEE 77, 14–23 (1989)CrossRefGoogle Scholar
  25. 25.
    Sanders, W.H., Meyer, J.F.: Stochastic activity networks: formal definitions and concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 315–343. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  26. 26.
    Stewart, W.J.: Introduction to the numerical solution of Markov chains, vol. 41. Princeton University Press, Princeton (1994) zbMATHGoogle Scholar
  27. 27.
    Telek, M., Rácz, S.: Numerical analysis of large Markov reward models. Performance Evaluation 36, 95–114 (1999)CrossRefzbMATHGoogle Scholar
  28. 28.
    Trivedi, K.S.: Probability and statistics with reliability, queuing, and computer science applications. John Wiley and Sons, New York (2001) zbMATHGoogle Scholar
  29. 29.
    Trivedi, K.S., Sahner, R.A.: SHARPE at the age of twenty two. ACM SIGMETRICS Perf. Eval. Review 36(4), 52–57 (2009)CrossRefGoogle Scholar
  30. 30.
    Trowitzsch, J., Zimmermann, A.: Using UML state machines and Petri nets for the quantitative investigation of ETCS. In: Int. Conf. on Performance evaluation methodologies and tools, pp. 34. ACM (2006)Google Scholar
  31. 31.
    Vicario, E.: Static analysis and dynamic steering of time dependent systems using time Petri nets. IEEE Trans. on SW Eng. 27(1), 728–748 (2001)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. on Software Eng. 35(5), 703–719 (2009)CrossRefGoogle Scholar
  33. 33.
    Zimmermann, A.: Dependability evaluation of complex systems with TimeNET. In: Int. Workshop on Dynamic Aspects in Dependability Models for Fault-Tolerant Systems, (DYADEM-FTS 2010) (2010)Google Scholar
  34. 34.
    Zimmermann, A., Freiheit, J., German, R., Hommel, G.: Petri net modelling and performability evaluation with TimeNET 3.0. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 188–202. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  35. 35.
    Zimmermann, A., Hommel, G.: A train control system case study in model-based real time system design. In: Int. Parallel and Distributed Processing Symposium, pp. 118–126. IEEE (2003)Google Scholar
  36. 36.
    Zimmermann, A., Hommel, G.: Towards modeling and evaluation of ETCS real-time communication and operation. Journal of Sys. and Soft. 77(1), 47–54 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Laura Carnevali
    • 1
  • Francesco Flammini
    • 2
  • Marco Paolieri
    • 1
    Email author
  • Enrico Vicario
    • 1
  1. 1.Department of Information EngineeringUniversity of FlorenceFlorenceItaly
  2. 2.Ansaldo STSGenoaItaly

Personalised recommendations