Solving Disjunctive Fuzzy Answer Set Programs

  • Mushthofa MushthofaEmail author
  • Steven Schockaert
  • Martine De Cock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9345)


Fuzzy Answer Set Programming (FASP) is an extension of the popular Answer Set Programming (ASP) paradigm which is tailored for continuous domains. Despite the existence of several prototype implementations, none of the existing solvers can handle disjunctive rules in a sound and efficient manner. We first show that a large class of disjunctive FASP programs called the self-reinforcing cycle-free (SRCF) programs can be polynomially reduced to normal FASP programs. We then introduce a general method for solving disjunctive FASP programs, which combines the proposed reduction with the use of mixed integer programming for minimality checking. We also report the result of the experimental benchmark of this method.


Mixed Integer Programming Program Component Fuzzy Graph Strongly Connect Component Normal Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alviano, M., Peñaloza, R.: Fuzzy answer sets approximations. Theor. Pract. Logic Program. 13(4–5), 753–767 (2013)zbMATHCrossRefGoogle Scholar
  2. 2.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, New York (2003) zbMATHCrossRefGoogle Scholar
  3. 3.
    Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Ann. Math. Artif. Intell. 12(1–2), 53–87 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Blondeel, M., Schockaert, S., Vermeir, D., De Cock, M.: Fuzzy answer set programming: an introduction. In: Yager, R.R., Abbasov, A.M., Reformat, M., Shahbazova, S.N. (eds.) Soft Computing: State of the Art Theory. STUDFUZZ, vol. 291, pp. 209–222. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Blondeel, M., Schockaert, S., Vermeir, D., De Cock, M.: Complexity of fuzzy answer set programming under Łukasiewicz semantics. Int. J. Approximate Reasoning 55(9), 1971–2003 (2014)zbMATHCrossRefGoogle Scholar
  6. 6.
    Viegas Damásio, C., Moniz Pereira, L.: Antitonic logic programs. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 379–393. Springer, Heidelberg (2001) Google Scholar
  7. 7.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  8. 8.
    Dix, J., Gottlob, G., Marek, W.: Reducing disjunctive to non-disjunctive semantics by shift-operations. Fundamenta Informaticae 28(1), 87–100 (1996)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Eiter, T., Faber, W., Mushthofa, M.: Space efficient evaluation of ASP programs with bounded predicate arities. In: 24th AAAI Conference on Artificial Intelligence, pp. 303–308 (2010)Google Scholar
  10. 10.
    Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database Syst. 22(3), 364–418 (1997)CrossRefGoogle Scholar
  11. 11.
    Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009) Google Scholar
  12. 12.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: DLVHEX: a prover for semantic-web reasoning under the answer-set semantics. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, pp. 1073–1074 (2006)Google Scholar
  13. 13.
    Erdem, E.: Theory and Applications of Answer Set Programming. Ph.D. thesis. the University of Texas at Austin (2002)Google Scholar
  14. 14.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming, vol. 88, pp. 1070–1080 (1988)Google Scholar
  16. 16.
    Hähnle, R.: Proof theory of many-valued logic-linear optimization-logic design: connections and interactions. Soft Comput. 1(3), 107–119 (1997)CrossRefGoogle Scholar
  17. 17.
    Jeroslow, R.G.: Logic-Based Decision Support: Mixed Integer Model Formulation. Elsevier, Amsterdam (1989) zbMATHGoogle Scholar
  18. 18.
    Lee, J., Wang, Y.: Stable models of fuzzy propositional formulas. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 326–339. Springer, Heidelberg (2014) Google Scholar
  19. 19.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lifschitz, V.: What is answer set programming? In: Proceedings of the 23rd AAAI Conference in Artificial Intelligence, vol. 8, pp. 1594–1597 (2008)Google Scholar
  21. 21.
    Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th International Conference on Logic Programming, pp. 23–37 (1994)Google Scholar
  22. 22.
    Loyer, Y., Straccia, U.: Epistemic foundation of stable model semantics. Theor. Pract. Logic Program. 6(4), 355–393 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the answer set semantics for the semantic web. In: Marchiori, M., Pan, J.Z., Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  24. 24.
    Madrid, N., Ojeda-Aciego, M.: Measuring inconsistency in fuzzy answer set semantics. IEEE Trans. Fuzzy Syst. 19(4), 605–622 (2011)CrossRefGoogle Scholar
  25. 25.
    Mushthofa, M., Schockaert, S., De Cock, M.: A finite-valued solver for disjunctive fuzzy answer set programs. In: Proceedings of European Conference in Artificial Intelligence 2014, pp. 645–650 (2014)Google Scholar
  26. 26.
    Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for smodels programs. Theor. Pract. Logic Program. 8(5–6), 717–761 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Ross, K.A.: Modular stratification and magic sets for datalog programs with negation. In: Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 161–171 (1990)Google Scholar
  28. 28.
    Schockaert, S., Janssen, J., Vermeir, D.: Fuzzy equilibrium logic: declarative problem solving in continuous domains. ACM Trans. Comput. Logic 13(4), 33:1–33:39 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998) zbMATHGoogle Scholar
  30. 30.
    Van Nieuwenborgh, D., De Cock, M., Hadavandi, E.: Fuzzy answer set programming. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 359–372. Springer, Heidelberg (2006) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mushthofa Mushthofa
    • 1
    • 3
    Email author
  • Steven Schockaert
    • 2
  • Martine De Cock
    • 1
    • 4
  1. 1.Department of Applied Mathematics, Computer Science and StatisticsGhent UniversityGhentBelgium
  2. 2.School of Computer Science and InformaticsCardiff UniversityCardiffUK
  3. 3.Department of Computer ScienceBogor Agricultural UniversityBogorIndonesia
  4. 4.Center for Data ScienceUniversity of Washington TacomaTacomaUSA

Personalised recommendations