Combining Heuristics for Configuration Problems Using Answer Set Programming

  • Martin Gebser
  • Anna Ryabokon
  • Gottfried Schenner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9345)


This paper describes an abstract problem derived from a combination of Siemens product configuration problems encountered in practice. Often isolated parts of configuration problems can be solved by mapping them to well-studied problems for which efficient heuristics exist (graph coloring, bin-packing, etc.). Unfortunately, these heuristics may fail to work when applied to a problem that combines two or more subproblems. In the paper we show how to formulate a combined configuration problem in Answer Set Programming (ASP) and to solve it using heuristics à la hclasp. In addition, we present a novel method for heuristic generation based on a combination of greedy search with ASP that allows to improve the performance of an ASP solver.


Configuration problem Heuristics Answer Set Programming 



This work was funded by COIN and AoF under grant 251170 as well as by FFG under grant 840242. The authors would like to thank all anonymous reviewers for their comments and Konstantin Schekotihin for helpful discussions on the subject of this paper.


  1. 1.
    Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., Ryabokon, A., Thorstensen, E.: Optimization methods for the partner units problem. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 4–19. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., Thorstensen, E.: Tackling the partner units configuration problem. In: Proceedings of IJCAI, pp. 497–503 (2011)Google Scholar
  3. 3.
    Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. AI Commun. 24(2), 147–164 (2011)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Cipriano, R., Di Gaspero, L., Dovier, A.: A hybrid solver for large neighborhood search: mixing gecode and easylocal++. In: Hybrid Metaheuristics, pp. 141–155 (2009)Google Scholar
  5. 5.
    Friedrich, G., Ryabokon, A., Falkner, A.A., Haselböck, A., Schenner, G., Schreiner, H.: (Re) configuration based on model generation. In: LoCoCo Workshop, pp. 26–35 (2011)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979) zbMATHGoogle Scholar
  7. 7.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan & Claypool Publishers, San Rafael (2012) Google Scholar
  8. 8.
    Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T., Wanko, P.: Domain-specific heuristics in answer set programming. In: Proceedings of AAAI (2013)Google Scholar
  9. 9.
    Haselböck, A., Schenner, G.: S’UPREME. In: Knowledge-Based Configuration: From Research to Business Cases, pp. 263–269 (2014)Google Scholar
  10. 10.
    Hotz, L., Felfernig, A., Stumptner, M., Ryabokon, A., Bagley, C., Wolter, K.: Configuration knowledge representation and reasoning. In: Knowledge-Based Configuration: From Research to Business Cases, pp. 41–72 (2014)Google Scholar
  11. 11.
    Madigan, C., Malik, S., Moskewicz, M., Zhang, L., Zhao, Y.: Chaff: engineering an efficient SAT solver. In: Proceedings of DAC (2001)Google Scholar
  12. 12.
    Mayer, W., Bettex, M., Stumptner, M., Falkner, A.: On solving complex rack configuration problems using CSP methods. In: Proceedings of the IJCAI Workshop on Configuration (2009)Google Scholar
  13. 13.
    McDermott, J.: R1: a rule-based configurer of computer systems. Artif. Intell. 19(1), 39–88 (1982)CrossRefGoogle Scholar
  14. 14.
    Ryabokon, A., Friedrich, G., Falkner, A.A.: Conflict-based program rewriting for solving configuration problems. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 465–478. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Schenner, G., Falkner, A., Ryabokon, A., Friedrich, G.: Solving object-oriented configuration scenarios with ASP. In: Proceedings of the Configuration Workshop, pp. 55–62 (2013)Google Scholar
  16. 16.
    Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combinators. Constraints 18(2), 269–305 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Sinz, C., Haag, A.: Configuration. IEEE Intell. Syst. 22(1), 78–90 (2007)CrossRefGoogle Scholar
  18. 18.
    Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing configuration knowledge with weight constraint rules. In: Proceedings of the Workshop on ASP, pp. 195–201 (2001)Google Scholar
  19. 19.
    Stumptner, M.: An overview of knowledge-based configuration. AI Commun. 10(2), 111–125 (1997)Google Scholar
  20. 20.
    Teppan, E.C., Friedrich, G., Falkner, A.A.: QuickPup: a heuristic backtracking algorithm for the partner units configuration problem. In: Proceedings of IAAI, pp. 2329–2334 (2012)Google Scholar
  21. 21.
    Tiihonen, J., Heiskala, M., Anderson, A., Soininen, T.: WeCoTin - a practical logic-based sales configurator. AI Commun. 26(1), 99–131 (2013)MathSciNetGoogle Scholar
  22. 22.
    Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. J. Global Optim. 37(1), 95–111 (2007)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martin Gebser
    • 1
    • 2
  • Anna Ryabokon
    • 3
  • Gottfried Schenner
    • 4
  1. 1.HIIT, Aalto UniversityEspooFinland
  2. 2.University of PotsdamPotsdamGermany
  3. 3.Alpen-Adria-Universität KlagenfurtKlagenfurtAustria
  4. 4.Siemens AG ÖsterreichViennaAustria

Personalised recommendations