Diagnostic Reasoning for Robotics Using Action Languages

  • Esra ErdemEmail author
  • Volkan Patoglu
  • Zeynep Gozen Saribatur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9345)


We introduce a novel diagnostic reasoning method for robotic systems with multiple robots, to find the causes of observed discrepancies relevant for plan execution. Our method proposes (i) a systematic modification of the robotic action domain description by utilizing defaults, and (ii) algorithms to compute a smallest set of diagnoses (e.g., broken robots) by means of hypothetical reasoning over the modified formalism. The proposed method is applied over various robotic scenarios in cognitive factories.


Diagnostic reasoning Action languages Answer set programming 



Thanks to anonymous reviewers for useful comments. This work is partially supported by TUBITAK Grants 111E116, 113M422 and 114E491 (ChistEra COACHES).


  1. 1.
    Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Theory Pract. Logic Program. 3(4–5), 425–461 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Baral, C., McIlraith, S., Son, T.C.: Formulating diagnostic problem solving using an action language with narratives and sensing. In: Proceedings of KR (2000)Google Scholar
  3. 3.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  4. 4.
    Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E., Patoglu, V.: Bridging the gap between high-level reasoning and low-level control. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 342–354. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  5. 5.
    Casolary, M., Lee, J.: Representing the language of the causal calculator in answer set programming. In: Proceedings of ICLP (Technical Communications) (2011)Google Scholar
  6. 6.
    Diankov, R.: Automated construction of robotic manipulation programs. Ph.D. thesis, Carnegie Mellon University, Robotics Institute, August 2010Google Scholar
  7. 7.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  8. 8.
    Eiter, T., Erdem, E., Faber, W., Senko, J.: A logic-based approach to finding explanations for discrepancies in optimistic plan execution. Fundamenta Informaticae 79, 25–69 (2007)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-orderreasoning and external evaluations in answer-set programming. In: Proceedings of IJCAI (2005)Google Scholar
  10. 10.
    Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., Uras, T.: Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In: Proceedings of ICRA (2011)Google Scholar
  11. 11.
    Erdem, E., Haspalamutgil, K., Patoglu, V., Uras, T.: Causality-based planning and diagnostic reasoning for cognitive factories. In: Proceedings of ETFA (2012)Google Scholar
  12. 12.
    Erdem, E., Patoglu, V., Saribatur, Z.G.: Integrating hybrid diagnostic reasoning in plan execution monitoring for cognitive factories with multiple robots. In: Proceedings of ICRA (2015)Google Scholar
  13. 13.
    Erdem, E., Patoglu, V., Schüller, P.: A systematic analysis of levels of integration between high-level task planning and low-level feasibility checks. In: Proceedings of RCRA (2014)Google Scholar
  14. 14.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  15. 15.
    Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, New York (2014) CrossRefGoogle Scholar
  16. 16.
    Gelfond, M., Lifschitz, V.: Action languages. ETAI 2, 193–210 (1998)MathSciNetGoogle Scholar
  17. 17.
    Giacomo, G.D., Reiter, R., Soutchanski, M.: Execution monitoring of high-level robot programs. In: Proceedings of KR (1998)Google Scholar
  18. 18.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artif. Intell. 153, 49–104 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Iwan, G.: Explaining what went wrong in dynamic domains. In: Proceedings of CogRob (2000)Google Scholar
  20. 20.
    de Kleer, J., Williams, B.C.: Diagnosis with behavioral modes. In: Proceedings of IJCAI (1989)Google Scholar
  21. 21.
    Kleer, J.D., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and systems. Artif. Intell. 56(2), 197–222 (1992)zbMATHCrossRefGoogle Scholar
  22. 22.
    Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138, 39–54 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Lifschitz, V.: What is answer set programming? In: Proceedings of AAAI (2008)Google Scholar
  24. 24.
    Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., et al. (eds.) The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    McCain, N.C.: Causality in commonsense reasoning about actions. Ph.D. thesis (1997)Google Scholar
  26. 26.
    McIlraith, S.A.: Explanatory diagnosis: conjecturing actions to explain observations. In: Proceedings of KR (1998)Google Scholar
  27. 27.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25, 241–273 (1999)zbMATHCrossRefGoogle Scholar
  28. 28.
    Reiter, R.: A theory of diagnosis from first principles (1987)Google Scholar
  29. 29.
    Sohrabi, S., Baier, J.A., McIlraith, S.A.: Diagnosis as planning revisited. In: Proceedings of KR (2010)Google Scholar
  30. 30.
    Thielscher, M.: A theory of dynamic diagnosis. ETAI 2(11) (1997)Google Scholar
  31. 31.
    Weyhrauch, R.W.: Prolegomena to a theory of formal reasoning. Technical report. Stanford University (1978)Google Scholar
  32. 32.
    Zaeh, M., Beetz, M., Shea, K., Reinhart, G., Bender, K., Lau, C., Ostgathe, M., Vogl, W., Wiesbeck, M., Engelhard, M., Ertelt, C., Rhr, T., Friedrich, M., Herle, S.: The cognitive factory. In: ElMaraghy, H.A. (ed.) Changeable and Reconfigurable Manufacturing Systems, pp. 355–371. Springer, London (2009)CrossRefGoogle Scholar
  33. 33.
    Zhang, S., Sridharan, M., Gelfond, M., Wyatt, J.: Towards an architecture for knowledge representation and reasoning in robotics. In: Beetz, M., Johnston, B., Williams, M.-A. (eds.) ICSR 2014. LNCS, vol. 8755, pp. 400–410. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Esra Erdem
    • 1
    Email author
  • Volkan Patoglu
    • 1
  • Zeynep Gozen Saribatur
    • 2
  1. 1.Sabanci UniversityIstanbulTurkey
  2. 2.Vienna University of TechnologyViennaAustria

Personalised recommendations