ASP, Amalgamation, and the Conceptual Blending Workflow

  • Manfred EppeEmail author
  • Ewen Maclean
  • Roberto Confalonieri
  • Oliver Kutz
  • Marco Schorlemmer
  • Enric Plaza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9345)


We present a framework for conceptual blending – a concept invention method that is advocated in cognitive science as a fundamental, and uniquely human engine for creative thinking. Herein, we employ the search capabilities of ASP to find commonalities among input concepts as part of the blending process, and we show how our approach fits within a generalised conceptual blending workflow. Specifically, we orchestrate ASP with imperative Python programming, to query external tools for theorem proving and colimit computation. We exemplify our approach with an example of creativity in mathematics.


Conceptual Blending Input Concept Common Algebraic Specification Language (CASL) Generalization Operation Categorical Colimit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the 7th Framework Programme for Research of the European Commission funded COINVENT project (FET-Open grant number: 611553). M. Eppe is supported by the German Academic Exchange Service.


  1. 1.
    Anderson, D., Zalta, E.: Frege, boolos and logical objects. J. Philos. Logic 33, 1–26 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Boden, M.A.: Creativity. In: Boden, M.A. (ed.) Artificial Intelligence (Handbook of Perception and Cognition), pp. 267–291. Academic Press, London (1996)CrossRefGoogle Scholar
  3. 3.
    Eppe, M., Confalonieri, R., Maclean, E., Kaliakatsos, M., Cambouropoulos, E., Schorlemmer, M., Kühnberger, K.-U.: Computational invention of cadences and chord progressions by conceptual chord-blending. In: IJCAI (2015, to appear)Google Scholar
  4. 4.
    Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books, New York (2002). ISBN 978-0-465-08785-3Google Scholar
  5. 5.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan and Claypool, San Rafael (2012)Google Scholar
  6. 6.
    Goguen, J., Harrell, D.F.: Style: a computational and conceptual blending-based approach. In: Argamon, S., Burns, K., Dubnov, S. (eds.) The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning, pp. 291–316. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12337-5_12. ISBN 978-3-642-12336-8CrossRefGoogle Scholar
  7. 7.
    Goguen, J.: An introduction to algebraic semiotics, with application to user interface design. In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS (LNAI), vol. 1562, pp. 242–291. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  8. 8.
    Guhe, M., Pease, A., Smaill, A., Martínez, M., Schmidt, M., Gust, H., Kühnberger, K.-U., Krumnack, U.: A computational account of conceptual blending in basic mathematics. Cogn. Syst. Res. 12(3–4), 249–265 (2011). doi: 10.1016/j.cogsys.2011.01.004 CrossRefGoogle Scholar
  9. 9.
    Ireland, A., Bundy, A.: Productive use of failure in inductive proof. J. Autom. Reason. 16(1–2), 79–111 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. J. Autom. Reason. 47, 251–289 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Montano-Rivas, O., McCasland, R., Dixon, L., Bundy, A.: Scheme-based synthesis of inductive theories. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part I. LNCS, vol. 6437, pp. 348–361. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  12. 12.
    Mossakowski, T.: Colimits of order-sorted specifications. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 316–332. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  13. 13.
    Mosses, P.D. (ed.): CASL Reference Manual: The Complete Documentation of the Common Algebraic Specification Language. LNCS, vol. 2960. Springer, Heidelberg (2004) Google Scholar
  14. 14.
    Ontañón, S., Plaza, E.: Amalgams: a formal approach for combining multiple case solutions. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 257–271. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    Pereira, F.C.: A computational model of creativity. PhD thesis, Universidade de Coimbra (2005)Google Scholar
  16. 16.
    Pereira, F.C.: Creativity and Artificial Intelligence: A Conceptual Blending Approach. Mouton de Gruyter, Berlin (2007)Google Scholar
  17. 17.
    Pierce, B.: Basic Category Theory for Computer Scientists. MIT Press, Cambridge (1991). ISBN 0262660717 Google Scholar
  18. 18.
    Veale, T., Donoghue, D.O.: Computation and blending. Cogn. Linguist. 11(3–4), 253–282 (2000). doi: 10.1515/cogl.2001.016 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Manfred Eppe
    • 1
    • 4
    Email author
  • Ewen Maclean
    • 2
  • Roberto Confalonieri
    • 1
  • Oliver Kutz
    • 3
  • Marco Schorlemmer
    • 1
  • Enric Plaza
    • 1
  1. 1.IIIA-CSICBarcelonaSpain
  2. 2.University of EdinburghEdinburghUK
  3. 3.Free University of Bozen-BolzanoBolzanoItaly
  4. 4.International Computer Science InstituteBerkeleyUSA

Personalised recommendations