Advertisement

HIV and Aging: Parallels and Synergistic Mechanisms Leading to Premature Disease and Functional Decline

  • Anna Hearps
  • Katherine Schafer
  • Kevin High
  • Alan Landay

Abstract

The success of antiretroviral therapy in preventing progression of human immunodeficiency virus (HIV) infection to full-blown Acquired Immune Deficiency Syndrome (AIDS) and extending the life span of people infected with HIV has led to a large number of persons aging with HIV (PAWH). This cohort is experiencing high rates of cardiovascular disease, cancer, and other serious, often chronic illnesses resulting in premature multi-morbidity, polypharmacy and functional decline. It is unclear whether chronic HIV infection, its treatment and associated side effects (e.g. lipodystrophy), or other risk factors prominent in PAWH (e.g. smoking, drug use, social isolation/stress) are responsible for this early onset of disease and functional decline, but there is no doubt that rates of geriatric syndromes like frailty, falls and cognitive impairment occur in 55–60 year old PAWH at a rate equivalent to that seen in 70+ year old HIV-uninfected persons. It is still unclear whether HIV-associated ‘aging’ is truly due to acceleration of the aging process or whether HIV is a risk factor for multiple diseases leading to the “aged phenotype” at a younger age. Uncovering the critical processes which drive age-related changes and identifying therapeutic strategies to ameliorate them will be important for management of PAWH.

Keywords

HIV AIDS Multi-morbidity Early-onset functional decline Geroscience 

Notes

Acknowledgements

Support for KH and AL from NIA 1R24AG044325.

Editor

Robin Huebner, National Institute of Allergy and Infectious Diseases (NIAID), NIH.

References

  1. 1.
    Costagliola D (2014) Demographics of HIV and aging. Curr Opin HIV AIDS 9(4):294–301. doi: 10.1097/coh.0000000000000076 PubMedGoogle Scholar
  2. 2.
    High KP, Brennan-Ing M, Clifford DB, Cohen MH, Currier J, Deeks SG, Deren S, Effros RB, Gebo K, Goronzy JJ, Justice AC, Landay A, Levin J, Miotti PG, Munk RJ, Nass H, Rinaldo CR Jr, Shlipak MG, Tracy R, Valcour V, Vance DE, Walston JD, Volberding P, Aging OARWGoHa (2012) HIV and aging: state of knowledge and areas of critical need for research. A report to the NIH Office of AIDS Research by the HIV and Aging Working Group. J Acquir Immune Defic Syndr 60 Suppl 1:S1–S18. doi: 10.1097/QAI.0b013e31825a3668 PubMedGoogle Scholar
  3. 3.
    Kirk JB, Goetz MB (2009) Human immunodeficiency virus in an aging population, a complication of success. J Am Geriatr Soc 57(11):2129–2138. doi: 10.1111/j.1532-5415.2009.02494.x PubMedGoogle Scholar
  4. 4.
    Luther VP, Wilkin AM (2007) HIV infection in older adults. Clin Geriatr Med 23(3):567–583, vii. doi: 10.1016/j.cger.2ar007.02.004
  5. 5.
    Mills EJ, Barnighausen T, Negin J (2012) HIV and aging – preparing for the challenges ahead. N Engl J Med 366(14):1270–1273. doi: 10.1056/NEJMp1113643 PubMedGoogle Scholar
  6. 6.
    Bloomfield GS, Khazanie P, Morris A, Rabadan-Diehl C, Benjamin LA, Murdoch D, Radcliff VS, Velazquez EJ, Hicks C (2014) HIV and noncommunicable cardiovascular and pulmonary diseases in low- and middle-income countries in the ART era: what we know and best directions for future research. J Acquir Immune Defic Syndr 67 Suppl 1:S40–S53. doi: 10.1097/qai.0000000000000257 PubMedGoogle Scholar
  7. 7.
    Narayan KM, Miotti PG, Anand NP, Kline LM, Harmston C, Gulakowski R 3rd, Vermund SH (2014) HIV and noncommunicable disease comorbidities in the era of antiretroviral therapy: a vital agenda for research in low- and middle-income country settings. J Acquir Immune Defic Syndr 67 Suppl 1:S2–S7. doi: 10.1097/qai.0000000000000267 PubMedGoogle Scholar
  8. 8.
    Burch JB, Augustine AD, Frieden LA, Hadley E, Howcroft TK, Johnson R, Khalsa PS, Kohanski RA, Li XL, Macchiarini F, Niederehe G, Oh YS, Pawlyk AC, Rodriguez H, Rowland JH, Shen GL, Sierra F, Wise BC (2014) Advances in geroscience: impact on healthspan and chronic disease. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S1–S3. doi: 10.1093/gerona/glu041 PubMedCentralPubMedGoogle Scholar
  9. 9.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. doi: 10.1016/j.cell.2013.05.039 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, Berti A, Rossi E, Roverato A, Palella F (2011) Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis 53(11):1120–1126. doi: 10.1093/cid/cir627 PubMedGoogle Scholar
  11. 11.
    Ruiz M, Cefalu C (2011) Characteristics of frail patients in a geriatric-HIV program: the experience of an Urban Academic Center at one year follow-up. J Int Assoc Phys AIDS Care 10(3):138–143. doi: 10.1177/1545109711399658 Google Scholar
  12. 12.
    Desquilbet L, Jacobson LP, Fried LP, Phair JP, Jamieson BD, Holloway M, Margolick JB, Study MAC (2007) HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J Gerontol A Biol Sci Med Sci 62(11):1279–1286PubMedGoogle Scholar
  13. 13.
    Onen NF, Agbebi A, Shacham E, Stamm KE, Onen AR, Overton ET (2009) Frailty among HIV-infected persons in an urban outpatient care setting. J Infect 59(5):346–352. doi: 10.1016/j.jinf.2009.08.008 PubMedGoogle Scholar
  14. 14.
    Erlandson KM, Schrack JA, Jankowski CM, Brown TT, Campbell TB (2014) Functional impairment, disability, and frailty in adults aging with HIV-infection. Curr HIV/AIDS Rep 11(3):279–290. doi: 10.1007/s11904-014-0215-y PubMedCentralPubMedGoogle Scholar
  15. 15.
    Miller CJ, Baker JV, Bormann AM, Erlandson KM, Huppler Hullsiek K, Justice AC, Neuhaus J, Paredes R, Petoumenos K, Wentworth D, Winston A, Wolfson J, Neaton JD (2014) Adjudicated morbidity and mortality outcomes by age among individuals with HIV infection on suppressive antiretroviral therapy. PLoS One 9(4), e95061. doi: 10.1371/journal.pone.0095061 PubMedCentralPubMedGoogle Scholar
  16. 16.
    Triant VA, Lee H, Hadigan C, Grinspoon SK (2007) Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab 92(7):2506–2512. doi: 10.1210/jc.2006-2190 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Hall AM, Hendry BM, Nitsch D, Connolly JO (2011) Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence. Am J Kidney Dis 57(5):773–780. doi: 10.1053/j.ajkd.2011.01.022 PubMedGoogle Scholar
  18. 18.
    Cannillo M, D’Ascenzo F, Grosso Marra W, Cerrato E, Calcagno A, Omede P, Bonora S, Mancone M, Vizza D, DiNicolantonio JJ, Pianelli M, Barbero U, Gili S, Annone U, Raviola A, Salera D, Mistretta E, Vilardi I, Colaci C, Abbate A, Zoccai GB, Moretti C, Gaita F (2014) Heart failure in patients with human immunodeficiency virus: a review of the literature. J Cardiovasc Med. doi: 10.2459/jcm.0000000000000168 Google Scholar
  19. 19.
    Triant VA (2014) Epidemiology of coronary heart disease in patients with human immunodeficiency virus. Rev Cardiovasc Med 15(Suppl 1):S1–S8PubMedCentralPubMedGoogle Scholar
  20. 20.
    Remick J, Georgiopoulou V, Marti C, Ofotokun I, Kalogeropoulos A, Lewis W, Butler J (2014) Heart failure in patients with human immunodeficiency virus infection: epidemiology, pathophysiology, treatment, and future research. Circulation 129(17):1781–1789. doi: 10.1161/circulationaha.113.004574 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Guaraldi G, Zona S, Alexopoulos N, Orlando G, Carli F, Ligabue G, Fiocchi F, Lattanzi A, Rossi R, Modena MG, Esposito R, Palella F, Raggi P (2009) Coronary aging in HIV-infected patients. Clin Infect Dis 49(11):1756–1762. doi: 10.1086/648080 PubMedGoogle Scholar
  22. 22.
    Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, Ledergerber B, Lundgren J, Neuhaus J, Nixon D, Paton NI, Neaton JD (2008) Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 5(10), e203. doi: 10.1371/journal.pmed.0050203 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Deeks SG, Phillips AN (2009) HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ 338:a3172. doi: 10.1136/bmj.a3172 PubMedGoogle Scholar
  24. 24.
    Gedela K, Vibhuti M, Pozniak A, Ward B, Boffito M (2014) Pharmacological management of cardiovascular conditions and diabetes in older adults with HIV infection. HIV Med 15(5):257–268. doi: 10.1111/hiv.12116 PubMedGoogle Scholar
  25. 25.
    Martinez E, Mocroft A, Garcia-Viejo MA, Perez-Cuevas JB, Blanco JL, Mallolas J, Bianchi L, Conget I, Blanch J, Phillips A, Gatell JM (2001) Risk of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective cohort study. Lancet 357(9256):592–598. doi: 10.1016/s0140-6736(00)04056-3 PubMedGoogle Scholar
  26. 26.
    Paula AA, Falcao MC, Pacheco AG (2013) Metabolic syndrome in HIV-infected individuals: underlying mechanisms and epidemiological aspects. AIDS Res Ther 10(1):32. doi: 10.1186/1742-6405-10-32 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Wand H, Calmy A, Carey DL, Samaras K, Carr A, Law MG, Cooper DA, Emery S (2007) Metabolic syndrome, cardiovascular disease and type 2 diabetes mellitus after initiation of antiretroviral therapy in HIV infection. AIDS 21(18):2445–2453. doi: 10.1097/QAD.0b013e3282efad32 PubMedGoogle Scholar
  28. 28.
    Cerrato E, D’Ascenzo F, Biondi-Zoccai G, Calcagno A, Frea S, Grosso Marra W, Castagno D, Omede P, Quadri G, Sciuto F, Presutti D, Frati G, Bonora S, Moretti C, Gaita F (2013) Cardiac dysfunction in pauci symptomatic human immunodeficiency virus patients: a meta-analysis in the highly active antiretroviral therapy era. Eur Heart J 34(19):1432–1436. doi: 10.1093/eurheartj/ehs471 PubMedGoogle Scholar
  29. 29.
    Papita A, Albu A, Fodor D, Itu C, Carstina D (2011) Arterial stiffness and carotid intima-media thickness in HIV infected patients. Med Ultrason 13(2):127–134PubMedGoogle Scholar
  30. 30.
    Seaberg EC, Benning L, Sharrett AR, Lazar JM, Hodis HN, Mack WJ, Siedner MJ, Phair JP, Kingsley LA, Kaplan RC (2010) Association between human immunodeficiency virus infection and stiffness of the common carotid artery. Stroke 41(10):2163–2170. doi: 10.1161/strokeaha.110.583856 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Cobucci RN, Lima PH, de Souza PC, Costa VV, Cornetta MD, Fernandes JV, Goncalves AK (2014) Assessing the impact of HAART on the incidence of defining and non-defining AIDS cancers among patients with HIV/AIDS: a systematic review. J Infect Public Health. doi: 10.1016/j.jiph.2014.08.003 PubMedGoogle Scholar
  32. 32.
    Burgi A, Brodine S, Wegner S, Milazzo M, Wallace MR, Spooner K, Blazes DL, Agan BK, Armstrong A, Fraser S, Crum NF (2005) Incidence and risk factors for the occurrence of non-AIDS-defining cancers among human immunodeficiency virus-infected individuals. Cancer 104(7):1505–1511. doi: 10.1002/cncr.21334 PubMedGoogle Scholar
  33. 33.
    Shiels MS, Pfeiffer RM, Engels EA (2010) Age at cancer diagnosis among persons with AIDS in the United States. Ann Intern Med 153(7):452–460. doi: 10.7326/0003-4819-153-7-201010050-00008 PubMedCentralPubMedGoogle Scholar
  34. 34.
    Shiels MS, Goedert JJ, Moore RD, Platz EA, Engels EA (2010) Reduced risk of prostate cancer in U.S. men with AIDS. Cancer Epidemiol Biomarkers Prev 19(11):2910–2915. doi: 10.1158/1055-9965.epi-10-0741 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Hasse B, Ledergerber B, Furrer H, Battegay M, Hirschel B, Cavassini M, Bertisch B, Bernasconi E, Weber R, Swiss HIVCS (2011) Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study. Clin Infect Dis 53(11):1130–1139. doi: 10.1093/cid/cir626 PubMedGoogle Scholar
  36. 36.
    Ances BM, Vaida F, Yeh MJ, Liang CL, Buxton RB, Letendre S, McCutchan JA, Ellis RJ (2010) HIV infection and aging independently affect brain function as measured by. J Infect Dis 201(3):336–340. doi: 10.1086/649899 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Womack JA, Goulet JL, Gibert C, Brandt CA, Skanderson M, Gulanski B, Rimland D, Rodriguez-Barradas MC, Tate J, Yin MT, Justice AC (2013) Physiologic frailty and fragility fracture in HIV-infected male veterans. Clin Infect Dis 56(10):1498–1504. doi: 10.1093/cid/cit056 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Womack JA, Goulet JL, Gibert C, Brandt C, Chang CC, Gulanski B, Fraenkel L, Mattocks K, Rimland D, Rodriguez-Barradas MC, Tate J, Yin MT, Justice AC (2011) Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS One 6(2), e17217. doi: 10.1371/journal.pone.0017217 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Chan W, Dart AM (2011) Vascular stiffness and aging in HIV. Sex Health 8(4):474–484. doi: 10.1071/sh10160 PubMedGoogle Scholar
  40. 40.
    Goulet JL, Fultz SL, Rimland D, Butt A, Gibert C, Rodriguez-Barradas M, Bryant K, Justice AC (2007) Aging and infectious diseases: do patterns of comorbidity vary by HIV status. Clin Infect Dis 45(12):1593–1601. doi: 10.1086/523577 PubMedCentralPubMedGoogle Scholar
  41. 41.
    El-Sadr WM, Lundgren J, Neaton JD, Gordin F, Abrams D, Arduino RC, Babiker A, Burman W, Clumeck N, Cohen CJ, Cohn D, Cooper D, Darbyshire J, Emery S, Fatkenheuer G, Gazzard B, Grund B, Hoy J, Klingman K, Losso M, Markowitz N, Neuhaus J, Phillips A, Rappoport C (2006) CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med 355(22):2283–2296. doi: 10.1056/NEJMoa062360 PubMedGoogle Scholar
  42. 42.
    Freiberg MS, Chang CC, Kuller LH, Skanderson M, Lowy E, Kraemer KL, Butt AA, Bidwell Goetz M, Leaf D, Oursler KA, Rimland D, Rodriguez Barradas M, Brown S, Gibert C, McGinnis K, Crothers K, Sico J, Crane H, Warner A, Gottlieb S, Gottdiener J, Tracy RP, Budoff M, Watson C, Armah KA, Doebler D, Bryant K, Justice AC (2013) HIV infection and the risk of acute myocardial infarction. JAMA Intern Med 173(8):614–622. doi: 10.1001/jamainternmed.2013.3728 PubMedGoogle Scholar
  43. 43.
    Rueda S, Law S, Rourke SB (2014) Psychosocial, mental health, and behavioral issues of aging with HIV. Curr Opin HIV AIDS 9(4):325–331. doi: 10.1097/coh.0000000000000071 PubMedGoogle Scholar
  44. 44.
    Justice AC, McGinnis KA, Skanderson M, Chang CC, Gibert CL, Goetz MB, Rimland D, Rodriguez-Barradas MC, Oursler KK, Brown ST, Braithwaite RS, May M, Covinsky KE, Roberts MS, Fultz SL, Bryant KJ (2010) Towards a combined prognostic index for survival in HIV infection: the role of “non-HIV” biomarkers. HIV Med 11(2):143–151. doi: 10.1111/j.1468-1293.2009.00757.x PubMedCentralPubMedGoogle Scholar
  45. 45.
    Akgun KM, Gordon K, Pisani M, Fried T, McGinnis KA, Tate JP, Butt AA, Gibert CL, Huang L, Rodriguez-Barradas MC, Rimland D, Justice AC, Crothers K (2013) Risk factors for hospitalization and medical intensive care unit (MICU) admission among HIV-infected Veterans. J Acquir Immune Defic Syndr 62(1):52–59. doi: 10.1097/QAI.0b013e318278f3fa PubMedCentralPubMedGoogle Scholar
  46. 46.
    Justice AC, Braithwaite RS (2012) Lessons learned from the first wave of aging with HIV. AIDS 26 Suppl 1:S11–S18. doi: 10.1097/QAD.0b013e3283558500 PubMedGoogle Scholar
  47. 47.
    Marzolini C, Back D, Weber R, Furrer H, Cavassini M, Calmy A, Vernazza P, Bernasconi E, Khoo S, Battegay M, Elzi L (2011) Ageing with HIV: medication use and risk for potential drug-drug interactions. J Antimicrob Chemother 66(9):2107–2111. doi: 10.1093/jac/dkr248 PubMedGoogle Scholar
  48. 48.
    Gleason LJ, Luque AE, Shah K (2013) Polypharmacy in the HIV-infected older adult population. Clin Interv Aging 8:749–763. doi: 10.2147/cia.s37738 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Nachega JB, Hsu AJ, Uthman OA, Spinewine A, Pham PA (2012) Antiretroviral therapy adherence and drug-drug interactions in the aging HIV population. AIDS 26 Suppl 1:S39–S53. doi: 10.1097/QAD.0b013e32835584ea PubMedGoogle Scholar
  50. 50.
    Frankel JK, Packer CD (2011) Cushing’s syndrome due to antiretroviral-budesonide interaction. Ann Pharmacother 45(6):823–824. doi: 10.1345/aph.1P731 PubMedGoogle Scholar
  51. 51.
    Ingle SM, May MT, Gill MJ, Mugavero MJ, Lewden C, Abgrall S, Fatkenheuer G, Reiss P, Saag MS, Manzardo C, Grabar S, Bruyand M, Moore D, Mocroft A, Sterling TR, D’Arminio Monforte A, Hernando V, Teira R, Guest J, Cavassini M, Crane HM, Sterne JA, Antiretroviral Therapy Cohort C (2014) Impact of risk factors for specific causes of death in the first and subsequent years of antiretroviral therapy among HIV-infected patients. Clin Infect Dis 59(2):287–297. doi: 10.1093/cid/ciu261 PubMedCentralPubMedGoogle Scholar
  52. 52.
    Park WB, Choe PG, Kim SH, Jo JH, Bang JH, Kim HB, Kim NJ, Oh M, Choe KW (2007) One-year adherence to clinic visits after highly active antiretroviral therapy: a predictor of clinical progress in HIV patients. J Intern Med 261(3):268–275. doi: 10.1111/j.1365-2796.2006.01762.x PubMedGoogle Scholar
  53. 53.
    Giordano TP, Gifford AL, White AC Jr, Suarez-Almazor ME, Rabeneck L, Hartman C, Backus LI, Mole LA, Morgan RO (2007) Retention in care: a challenge to survival with HIV infection. Clin Infect Dis 44(11):1493–1499. doi: 10.1086/516778 PubMedGoogle Scholar
  54. 54.
    Nachega JB, Parienti JJ, Uthman OA, Gross R, Dowdy DW, Sax PE, Gallant JE, Mugavero MJ, Mills EJ, Giordano TP (2014) Lower pill burden and once-daily antiretroviral treatment regimens for HIV infection: A meta-analysis of randomized controlled trials. Clin Infect Dis 58(9):1297–1307. doi: 10.1093/cid/ciu046 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Desquilbet L, Jacobson LP, Fried LP, Phair JP, Jamieson BD, Holloway M, Margolick JB (2011) A frailty-related phenotype before HAART initiation as an independent risk factor for AIDS or death after HAART among HIV-infected men. J Gerontol A Biol Sci Med Sci 66(9):1030–1038. doi: 10.1093/gerona/glr097 PubMedGoogle Scholar
  56. 56.
    Önen NF, Overton ET (2011) A review of premature frailty in HIV-infected persons; another manifestation of HIV-related accelerated aging. Curr Aging Sci 4(1):33–41PubMedGoogle Scholar
  57. 57.
    Terzian AS, Holman S, Nathwani N, Robison E, Weber K, Young M, Greenblatt RM, Gange SJ (2009) Factors associated with preclinical disability and frailty among HIV-infected and HIV-uninfected women in the era of cART. J Womens Health 18(12):1965–1974. doi: 10.1089/jwh.2008.1090 Google Scholar
  58. 58.
    Desquilbet L, Margolick JB, Fried LP, Phair JP, Jamieson BD, Holloway M, Jacobson LP (2009) Relationship between a frailty-related phenotype and progressive deterioration of the immune system in HIV-infected men. J Acquir Immune Defic Syndr 50(3):299–306PubMedCentralPubMedGoogle Scholar
  59. 59.
    Shah K, Hilton TN, Myers L, Pinto JF, Luque AE, Hall WJ (2012) A new frailty syndrome: central obesity and frailty in older adults with the human immunodeficiency virus. J Am Geriatr Soc 60(3):545–549. doi: 10.1111/j.1532-5415.2011.03819.x PubMedCentralPubMedGoogle Scholar
  60. 60.
    Oursler KK, Goulet JL, Crystal S, Justice AC, Crothers K, Butt AA, Rodriguez-Barradas MC, Favors K, Leaf D, Katzel LI, Sorkin JD (2011) Association of Age and comorbidity with physical function in HIV-infected and uninfected patients: results from the Veterans Aging Cohort Study. AIDS Patient Care STDS 25(1):13–20. doi: 10.1089/apc.2010.0242 PubMedCentralPubMedGoogle Scholar
  61. 61.
    Bauer LO, Wu Z, Wolfson LI (2011) An obese body mass increases the adverse effects of HIV/AIDS on balance and gait. Phys Ther 91(7):1063–1071. doi: 10.2522/ptj.20100292 PubMedCentralPubMedGoogle Scholar
  62. 62.
    Erlandson KM, Allshouse AA, Jankowski CM, Duong S, Mawhinney S, Kohrt WM, Campbell TB (2012) Comparison of functional status instruments in HIV-infected adults on effective antiretroviral therapy. HIV Clin Trials 13(6):324–334. doi: 10.1310/hct1306-324 PubMedCentralPubMedGoogle Scholar
  63. 63.
    Houston DK, Ding J, Nicklas BJ, Harris TB, Lee JS, Nevitt MC, Rubin SM, Tylavsky FA, Kritchevsky SB, Health ABCS (2009) Overweight and obesity over the adult life course and incident mobility limitation in older adults: the health, aging and body composition study. Am J Epidemiol 169(8):927–936. doi: 10.1093/aje/kwp007 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Ruiz M, Cefalu C (2011) Frailty syndrome in patients with HIV infection. Clin Geriatr 19(2):46–49Google Scholar
  65. 65.
    Pathai S, Bajillan H, Landay A, High K (2014) Is HIV a model of accelerated or accentuated aging? J Gerontol A Biol Sci Med Sci 69(7):833–842PubMedCentralPubMedGoogle Scholar
  66. 66.
    Valcour V, Paul R, Chiao S, Wendelken LA, Miller B (2011) Screening for cognitive impairment in human immunodeficiency virus. Clin Infect Dis 53(8):836–842. doi: 10.1093/cid/cir524 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program (2013) Clin Infect Dis 56(7):1004–1017. doi: 10.1093/cid/cis975
  68. 68.
    Aberg JA, Gallant JE, Ghanem KG, Emmanuel P, Zingman BS, Horberg MA, America IDSo (2014) Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the Infectious Diseases Society of America. Clin Infect Dis 58(1):e1–e34. doi: 10.1093/cid/cit665 PubMedGoogle Scholar
  69. 69.
    Ances BM, Ortega M, Vaida F, Heaps J, Paul R (2012) Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr 59(5):469–477. doi: 10.1097/QAI.0b013e318249db17 PubMedCentralPubMedGoogle Scholar
  70. 70.
    Moore RC, Moore DJ, Thompson WK, Vahia IV, Grant I, Jeste DV (2013) A case-controlled study of successful aging in older HIV-infected adults. J Clin Psychiatry 74(5):e417–e423. doi: 10.4088/JCP.12m08100 PubMedCentralPubMedGoogle Scholar
  71. 71.
    Greysen SR, Horwitz LI, Covinsky KE, Gordon K, Ohl ME, Justice AC (2013) Does social isolation predict hospitalization and mortality among HIV+ and uninfected older veterans? J Am Geriatr Soc 61(9):1456–1463. doi: 10.1111/jgs.12410 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Shippy RA, Karpiak SE (2005) The aging HIV/AIDS population: fragile social networks. Aging Ment Health 9(3):246–254. doi: 10.1080/13607860412331336850 PubMedGoogle Scholar
  73. 73.
    Utsuyama M, Hirokawa K, Kurashima C, Fukayama M, Inamatsu T, Suzuki K, Hashimoto W, Sato K (1992) Differential age-change in the numbers of CD4 + CD45RA+ and CD4 + CD29+ T cell subsets in human peripheral blood. Mech Ageing Dev 63(1):57–68PubMedGoogle Scholar
  74. 74.
    Xu X, Beckman I, Ahern M, Bradley J (1993) A comprehensive analysis of peripheral blood lymphocytes in healthy aged humans by flow cytometry. Immunol Cell Biol 71(Pt 6):549–557. doi: 10.1038/icb.1993.61 PubMedGoogle Scholar
  75. 75.
    Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA, Herzenberg LA (1995) CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest 95(5):2061–2066. doi: 10.1172/JCI117892 PubMedCentralPubMedGoogle Scholar
  76. 76.
    Kalayjian RC, Landay A, Pollard RB, Taub DD, Gross BH, Francis IR, Sevin A, Pu M, Spritzler J, Chernoff M, Namkung A, Fox L, Martinez A, Waterman K, Fiscus SA, Sha B, Johnson D, Slater S, Rousseau F, Lederman MM (2003) Age-related immune dysfunction in health and in human immunodeficiency virus (HIV) disease: association of age and HIV infection with naive CD8+ cell depletion, reduced expression of CD28 on CD8+ cells, and reduced thymic volumes. J Infect Dis 187(12):1924–1933. doi: 10.1086/375372 PubMedGoogle Scholar
  77. 77.
    Serrano-Villar S, Perez-Elias MJ, Dronda F, Casado JL, Moreno A, Royuela A, Perez-Molina JA, Sainz T, Navas E, Hermida JM, Quereda C, Moreno S (2014) Increased risk of serious non-AIDS-related events in HIV-infected subjects on antiretroviral therapy associated with a low CD4/CD8 ratio. PLoS One 9(1), e85798. doi: 10.1371/journal.pone.0085798 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Menozzi M, Zona S, Santoro A, Carli F, Stentarelli C, Mussini C, Guaraldi G (2014) CD4/CD8 ratio is not predictive of multi-morbidity prevalence in HIV-infected patients but identify patients with higher CVD risk. J Int AIDS Soc 17(4 Suppl 3):19709. doi: 10.7448/IAS.17.4.19709 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Bernal E, Serrano J, Perez A, Valero S, Garcia E, Marin I, Munoz A, Verdu JM, Vera C, Cano A (2014) The CD4:CD8 ratio is associated with IMT progression in HIV-infected patients on antiretroviral treatment. J Int AIDS Soc 17(4 Suppl 3):19723. doi: 10.7448/IAS.17.4.19723 PubMedCentralPubMedGoogle Scholar
  80. 80.
    Saracino A, Bruno G, Scudeller L, Volpe A, Caricato P, Ladisa N, Monno L, Angarano G (2014) Chronic inflammation in a long-term cohort of HIV-infected patients according to the normalization of the CD4:CD8 ratio. AIDS Res Hum Retroviruses 30(12):1178–1184. doi: 10.1089/aid.2014.0080 PubMedGoogle Scholar
  81. 81.
    Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, Marcato A, Passeri G, Ortolani C, Forti E et al (1993) Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 82(9):2767–2773PubMedGoogle Scholar
  82. 82.
    Phelouzat MA, Arbogast A, Laforge T, Quadri RA, Proust JJ (1996) Excessive apoptosis of mature T lymphocytes is a characteristic feature of human immune senescence. Mech Ageing Dev 88(1–2):25–38PubMedGoogle Scholar
  83. 83.
    de Oliveira Pinto LM, Garcia S, Lecoeur H, Rapp C, Gougeon ML (2002) Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1 (TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase-8 and caspase-3. Blood 99(5):1666–1675PubMedGoogle Scholar
  84. 84.
    Effros RB (1997) Loss of CD28 expression on T lymphocytes: a marker of replicative senescence. Dev Comp Immunol 21(6):471–478PubMedGoogle Scholar
  85. 85.
    Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, Wang L, Harley CB, Villeponteau B, West MD, Giorgi JV (1996) Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS (London, England) 10(8):F17–F22Google Scholar
  86. 86.
    Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190(2):157–167PubMedCentralPubMedGoogle Scholar
  87. 87.
    Lee SA, Sinclair E, Hatano H, Hsue PY, Epling L, Hecht FM, Bangsberg DR, Martin JN, McCune JM, Deeks SG, Hunt PW (2014) Impact of HIV on CD8+ T cell CD57 expression is distinct from that of CMV and aging. PLoS One 9(2), e89444. doi: 10.1371/journal.pone.0089444 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Deeks SG (2011) HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 62:141–155. doi: 10.1146/annurev-med-042909-093756 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Kalayjian RC, Spritzler J, Pu M, Landay A, Pollard RB, Stocker V, Harthi LA, Gross BH, Francis IR, Fiscus SA, Tebas P, Bosch RJ, Valcour V, Lederman MM, Adult ACTG, Study T (2005) Distinct mechanisms of T cell reconstitution can be identified by estimating thymic volume in adult HIV-1 disease. J Infect Dis 192(9):1577–1587. doi: 10.1086/466527 PubMedGoogle Scholar
  90. 90.
    Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB (2011) Age effects on B cells and humoral immunity in humans. Ageing Res Rev 10(3):330–335. doi: 10.1016/j.arr.2010.08.004 PubMedCentralPubMedGoogle Scholar
  91. 91.
    Moir S, Fauci AS (2009) B cells in HIV infection and disease. Nat Rev 9(4):235–245. doi: 10.1038/nri2524 Google Scholar
  92. 92.
    Hart M, Steel A, Clark SA, Moyle G, Nelson M, Henderson DC, Wilson R, Gotch F, Gazzard B, Kelleher P (2007) Loss of discrete memory B cell subsets is associated with impaired immunization responses in HIV-1 infection and may be a risk factor for invasive pneumococcal disease. J Immunol 178(12):8212–8220PubMedGoogle Scholar
  93. 93.
    De Milito A, Nilsson A, Titanji K, Thorstensson R, Reizenstein E, Narita M, Grutzmeier S, Sonnerborg A, Chiodi F (2004) Mechanisms of hypergammaglobulinemia and impaired antigen-specific humoral immunity in HIV-1 infection. Blood 103(6):2180–2186. doi: 10.1182/blood-2003-07-2375 PubMedGoogle Scholar
  94. 94.
    Siewe B, Stapleton JT, Martinson J, Keshavarzian A, Kazmi N, Demarais PM, French AL, Landay A (2013) Regulatory B cell frequency correlates with markers of HIV disease progression and attenuates anti-HIV CD8(+) T cell function in vitro. J Leukoc Biol 93(5):811–818. doi: 10.1189/jlb.0912436 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Siewe B, Keshavarzian A, French A, Demarais P, Landay A (2013) A role for TLR signaling during B cell activation in antiretroviral-treated HIV individuals. AIDS Res Hum Retroviruses 29(10):1353–1360. doi: 10.1089/AID.2013.0115 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Van Epps P, Matining RM, Tassiopoulos K, Anthony DD, Landay A, Kalayjian RC, Canaday DH (2014) Older age is associated with peripheral blood expansion of naive B cells in HIV-infected subjects on antiretroviral therapy. PLoS One 9(9), e107064. doi: 10.1371/journal.pone.0107064 PubMedCentralPubMedGoogle Scholar
  97. 97.
    Hearps AC, Maisa A, Cheng WJ, Angelovich TA, Lichtfuss GF, Palmer CS, Landay AL, Jaworowski A, Crowe SM (2012) HIV infection induces age-related changes to monocytes and innate immune activation in young men that persist despite combination antiretroviral therapy. AIDS (London, England) 26(7):843–853. doi: 10.1097/QAD.0b013e328351f756 Google Scholar
  98. 98.
    Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11(5):867–875. doi: 10.1111/j.1474-9726.2012.00851.x PubMedGoogle Scholar
  99. 99.
    Martin GE, Gouillou M, Hearps AC, Angelovich TA, Cheng AC, Lynch F, Cheng WJ, Paukovics G, Palmer CS, Novak RM, Jaworowski A, Landay AL, Crowe SM (2013) Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women. PLoS One 8(1), e55279. doi: 10.1371/journal.pone.0055279 PubMedCentralPubMedGoogle Scholar
  100. 100.
    Clark JA, Peterson TC (1994) Cytokine production and aging: overproduction of IL-8 in elderly males in response to lipopolysaccharide. Mech Ageing Dev 77(2):127–139. doi:0047-6374(94)90020-5 [pii]PubMedGoogle Scholar
  101. 101.
    Delpedro AD, Barjavel MJ, Mamdouh Z, Faure S, Bakouche O (1998) Signal transduction in LPS-activated aged and young monocytes. J Interferon Cytokine Res 18(6):429–437PubMedGoogle Scholar
  102. 102.
    Jaworowski A, Ellery P, Maslin CL, Naim E, Heinlein AC, Ryan CE, Paukovics G, Hocking J, Sonza S, Crowe SM (2006) Normal CD16 expression and phagocytosis of Mycobacterium avium complex by monocytes from a current cohort of HIV-1-infected patients. J Infect Dis 193(5):693–697PubMedGoogle Scholar
  103. 103.
    Spencer ME, Jain A, Matteini A, Beamer BA, Wang NY, Leng SX, Punjabi NM, Walston JD, Fedarko NS (2010) Serum levels of the immune activation marker neopterin change with age and gender and are modified by race, BMI, and percentage of body fat. J Gerontol A Biol Sci Med Sci 65(8):858–865. doi: 10.1093/gerona/glq066, glq066 [pii]PubMedGoogle Scholar
  104. 104.
    Antonelli A, Rotondi M, Fallahi P, Ferrari SM, Paolicchi A, Romagnani P, Serio M, Ferrannini E (2006) Increase of CXC chemokine CXCL10 and CC chemokine CCL2 serum levels in normal ageing. Cytokine 34(1–2):32–38. doi: 10.1016/j.cyto.2006.03.012, S1043-4666(06)00132-3 [pii]PubMedGoogle Scholar
  105. 105.
    Burdo TH, Lentz MR, Autissier P, Krishnan A, Halpern E, Letendre S, Rosenberg ES, Ellis RJ, Williams KC (2011) Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis 204(1):154–163. doi: 10.1093/infdis/jir214, jir214 [pii]PubMedCentralPubMedGoogle Scholar
  106. 106.
    Kamat A, Misra V, Cassol E, Ancuta P, Yan Z, Li C, Morgello S, Gabuzda D (2012) A plasma biomarker signature of immune activation in HIV patients on antiretroviral therapy. PLoS One 7(2), e30881. doi: 10.1371/journal.pone.0030881 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Méndez-Lagares G, Romero-Sánchez MC, Ruiz-Mateos E, Genebat M, Ferrando-Martínez S, Muñoz-Fernández MÁ, Pacheco YM, Leal M (2013) Long-term suppressive combined antiretroviral treatment does not normalize the serum level of soluble CD14. J Infect Dis 207(8):1221–1225. doi: 10.1093/infdis/jit025 PubMedGoogle Scholar
  108. 108.
    Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ, Waring MT, Streeck H, Johnston MN, Staller KD, Zaman MT, Yu XG, Lichterfeld M, Basgoz N, Rosenberg ES, Altfeld M (2005) Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 106(10):3366–3369PubMedGoogle Scholar
  109. 109.
    Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R (1999) NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 34(2):253–265. doi:S0531-5565(98)00076-X [pii]PubMedGoogle Scholar
  110. 110.
    Ogata K, Yokose N, Tamura H, An E, Nakamura K, Dan K, Nomura T (1997) Natural killer cells in the late decades of human life. Clin Immunol Immunopathol 84(3):269–275PubMedGoogle Scholar
  111. 111.
    Fernandes G, Gupta S (1981) Natural killing and antibody-dependent cytotoxicity by lymphocyte subpopulations in young and aging humans. J Clin Immunol 1(3):141–148PubMedGoogle Scholar
  112. 112.
    Lichtfuss GF, Cheng WJ, Farsakoglu Y, Paukovics G, Rajasuriar R, Velayudham P, Kramski M, Hearps AC, Cameron PU, Lewin SR, Crowe SM, Jaworowski A (2012) Virologically suppressed HIV patients show activation of NK cells and persistent innate immune activation. J Immunol 189(3):1491–1499. doi: 10.4049/jimmunol.1200458 PubMedGoogle Scholar
  113. 113.
    Fogli M, Costa P, Murdaca G, Setti M, Mingari MC, Moretta L, Moretta A, De Maria A (2004) Significant NK cell activation associated with decreased cytolytic function in peripheral blood of HIV-1-infected patients. Eur J Immunol 34(8):2313–2321. doi: 10.1002/eji.200425251 PubMedGoogle Scholar
  114. 114.
    Azzoni L, Papasavvas E, Chehimi J, Kostman JR, Mounzer K, Ondercin J, Perussia B, Montaner LJ (2002) Sustained impairment of IFN-gamma secretion in suppressed HIV-infected patients despite mature NK cell recovery: evidence for a defective reconstitution of innate immunity. J Immunol 168(11):5764–5770PubMedGoogle Scholar
  115. 115.
    Moroni F, Di Paolo ML, Rigo A, Cipriano C, Giacconi R, Recchioni R, Marcheselli F, Malavolta M, Mocchegiani E (2005) Interrelationship among neutrophil efficiency, inflammation, antioxidant activity and zinc pool in very old age. Biogerontology 6(4):271–281. doi: 10.1007/s10522-005-2625-0 PubMedGoogle Scholar
  116. 116.
    Agrawal A, Agrawal S, Tay J, Gupta S (2008) Biology of dendritic cells in aging. J Clin Immunol 28(1):14–20. doi: 10.1007/s10875-007-9127-6 PubMedGoogle Scholar
  117. 117.
    Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S (2007) Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol 178(11):6912–6922PubMedGoogle Scholar
  118. 118.
    Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ (2004) Aging and innate immune cells. J Leukoc Biol 76(2):291–299. doi: 10.1189/jlb.1103592 PubMedGoogle Scholar
  119. 119.
    Martinson JA, Roman-Gonzalez A, Tenorio AR, Montoya CJ, Gichinga CN, Rugeles MT, Tomai M, Krieg AM, Ghanekar S, Baum LL, Landay AL (2007) Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell Immunol 250(1–2):75–84PubMedCentralPubMedGoogle Scholar
  120. 120.
    Kaszubowska L (2008) Telomere shortening and ageing of the immune system. J Physiol Pharmacol 59(Suppl 9):169–186PubMedGoogle Scholar
  121. 121.
    Meeker AK, Hicks JL, Iacobuzio-Donahue CA, Montgomery EA, Westra WH, Chan TY, Ronnett BM, De Marzo AM (2004) Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res 10(10):3317–3326. doi: 10.1158/1078-0432.CCR-0984-03 PubMedGoogle Scholar
  122. 122.
    Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M, Aviv A (2007) Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 165(1):14–21. doi: 10.1093/aje/kwj346 PubMedGoogle Scholar
  123. 123.
    Weischer M, Bojesen SE, Cawthon RM, Freiberg JJ, Tybjaerg-Hansen A, Nordestgaard BG (2012) Short telomere length, myocardial infarction, ischemic heart disease, and early death. Arterioscler Thromb Vasc Biol 32(3):822–829. doi: 10.1161/ATVBAHA.111.237271 PubMedGoogle Scholar
  124. 124.
    Willeit P, Willeit J, Brandstatter A, Ehrlenbach S, Mayr A, Gasperi A, Weger S, Oberhollenzer F, Reindl M, Kronenberg F, Kiechl S (2010) Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol 30(8):1649–1656. doi: 10.1161/ATVBAHA.110.205492 PubMedGoogle Scholar
  125. 125.
    Honig LS, Kang MS, Schupf N, Lee JH, Mayeux R (2012) Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol 69(10):1332–1339. doi: 10.1001/archneurol.2012.1541 PubMedCentralPubMedGoogle Scholar
  126. 126.
    Hochstrasser T, Marksteiner J, Humpel C (2012) Telomere length is age-dependent and reduced in monocytes of Alzheimer patients. Exp Gerontol 47(2):160–163. doi: 10.1016/j.exger.2011.11.012 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Duprez DA, Neuhaus J, Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, Ledergerber B, Lundgren J, Nixon D, Paton NI, Prineas RJ, Neaton JD (2012) Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS One 7(9), e44454. doi: 10.1371/journal.pone.0044454 PubMedCentralPubMedGoogle Scholar
  128. 128.
    De Luca A, de Gaetano DK, Colafigli M, Cozzi-Lepri A, De Curtis A, Gori A, Sighinolfi L, Giacometti A, Capobianchi MR, D’Avino A, Iacoviello L, Cauda R, D’Arminio MA (2013) The association of high-sensitivity c-reactive protein and other biomarkers with cardiovascular disease in patients treated for HIV: a nested case--control study. BMC Infect Dis 13(1):414. doi: 10.1186/1471-2334-13-414 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Koethe JR, Dee K, Bian A, Shintani A, Turner M, Bebawy S, Sterling TR, Hulgan T (2013) Circulating interleukin-6, soluble CD14, and other inflammation biomarker levels differ between obese and nonobese HIV-infected adults on antiretroviral therapy. AIDS Res Hum Retroviruses 29(7):1019–1025. doi: 10.1089/aid.2013.0016 PubMedCentralPubMedGoogle Scholar
  130. 130.
    Hussein AA, Gottdiener JS, Bartz TM, Sotoodehnia N, Defilippi C, See V, Deo R, Siscovick D, Stein PK, Lloyd-Jones D (2013) Inflammation and sudden cardiac death in a community-based population of older adults: The Cardiovascular Health Study. Heart Rhythm 10(10):1425–1432. doi: 10.1016/j.hrthm.2013.07.004 PubMedGoogle Scholar
  131. 131.
    Empana JP, Jouven X, Canoui-Poitrine F, Luc G, Tafflet M, Haas B, Arveiler D, Ferrieres J, Ruidavets JB, Montaye M, Yarnell J, Morange P, Kee F, Evans A, Amouyel P, Ducimetiere P (2010) C-reactive protein, interleukin 6, fibrinogen and risk of sudden death in European middle-aged men: the PRIME study. Arterioscler Thromb Vasc Biol 30(10):2047–2052. doi: 10.1161/atvbaha.110.208785 PubMedGoogle Scholar
  132. 132.
    Jenny NS, French B, Arnold AM, Strotmeyer ES, Cushman M, Chaves PH, Ding J, Fried LP, Kritchevsky SB, Rifkin DE, Sarnak MJ, Newman AB (2012) Long-term assessment of inflammation and healthy aging in late life: the Cardiovascular Health Study All Stars. J Gerontol A Biol Sci Med Sci 67(9):970–976. doi: 10.1093/gerona/glr261 PubMedCentralPubMedGoogle Scholar
  133. 133.
    Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15):1767–1772PubMedGoogle Scholar
  134. 134.
    Jenny NS, Tracy RP, Ogg MS, le Luong A, Kuller LH, Arnold AM, Sharrett AR, Humphries SE (2002) In the elderly, interleukin-6 plasma levels and the -174G > C polymorphism are associated with the development of cardiovascular disease. Arterioscler Thromb Vasc Biol 22(12):2066–2071PubMedGoogle Scholar
  135. 135.
    Hsue PY, Scherzer R, Hunt PW, Schnell A, Bolger AF, Kalapus SC, Maka K, Martin JN, Ganz P, Deeks SG (2012) Carotid intima-media thickness progression in HIV-infected adults occurs preferentially at the carotid bifurcation and is predicted by inflammation. J Am Heart Assoc 1(2). pii: jah3-e000422. doi: 10.1161/jaha.111.000422
  136. 136.
    Biron A, Bobin-Dubigeon C, Volteau C, Piroth L, Perre P, Leport C, Prazuck T, Jovelin T, Billard M, Sebille V, Bard JM, Raffi F, Biron C (2012) Metabolic syndrome in French HIV-infected patients: prevalence and predictive factors after 3 years of antiretroviral therapy. AIDS Res Hum Retroviruses 28(12):1672–1678. doi: 10.1089/aid.2012.0048 PubMedGoogle Scholar
  137. 137.
    Brown TT, Tassiopoulos K, Bosch RJ, Shikuma C, McComsey GA (2010) Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care 33(10):2244–2249. doi: 10.2337/dc10-0633 PubMedCentralPubMedGoogle Scholar
  138. 138.
    Schnabel RB, Yin X, Larson MG, Yamamoto JF, Fontes JD, Kathiresan S, Rong J, Levy D, Keaney JF Jr, Wang TJ, Murabito JM, Vasan RS, Benjamin EJ (2013) Multiple inflammatory biomarkers in relation to cardiovascular events and mortality in the community. Arterioscler Thromb Vasc Biol 33(7):1728–1733. doi: 10.1161/atvbaha.112.301174 PubMedCentralPubMedGoogle Scholar
  139. 139.
    Parkner T, Sorensen LP, Nielsen AR, Fischer CP, Bibby BM, Nielsen S, Pedersen BK, Moller HJ (2012) Soluble CD163: a biomarker linking macrophages and insulin resistance. Diabetologia 55(6):1856–1862. doi: 10.1007/s00125-012-2533-1 PubMedGoogle Scholar
  140. 140.
    Shikuma CM, Barbour JD, Ndhlovu LC, Keating SM, Norris PJ, Budoff M, Parikh N, Seto T, Gangcuangco LM, Ogata-Arakaki D, Chow D (2013) Plasma monocyte chemoattractant protein-1 and tumor necrosis factor-alpha levels predict the presence of coronary artery calcium in HIV-infected individuals independent of traditional cardiovascular risk factors. AIDS Res Hum Retroviruses. doi: 10.1089/aid.2013.0183 PubMedGoogle Scholar
  141. 141.
    Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A, Zaman T, Stone D, Mefford M, Morgello S, Singer EJ, Wolinsky SM, Gabuzda D (2008) Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 3(6), e2516. doi: 10.1371/journal.pone.0002516 PubMedCentralPubMedGoogle Scholar
  142. 142.
    Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE (2002) Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology 59(3):371–378PubMedGoogle Scholar
  143. 143.
    Noble JM, Manly JJ, Schupf N, Tang MX, Mayeux R, Luchsinger JA (2010) Association of C-reactive protein with cognitive impairment. Arch Neurol 67(1):87–92. doi: 10.1001/archneurol.2009.308 PubMedCentralPubMedGoogle Scholar
  144. 144.
    Ryan LA, Zheng J, Brester M, Bohac D, Hahn F, Anderson J, Ratanasuwan W, Gendelman HE, Swindells S (2001) Plasma levels of soluble CD14 and tumor necrosis factor-alpha type II receptor correlate with cognitive dysfunction during human immunodeficiency virus type 1 infection. J Infect Dis 184(6):699–706. doi: 10.1086/323036 PubMedGoogle Scholar
  145. 145.
    Engelhart MJ, Geerlings MI, Meijer J, Kiliaan A, Ruitenberg A, van Swieten JC, Stijnen T, Hofman A, Witteman JC, Breteler MM (2004) Inflammatory proteins in plasma and the risk of dementia: the rotterdam study. Arch Neurol 61(5):668–672. doi: 10.1001/archneur.61.5.668 PubMedGoogle Scholar
  146. 146.
    Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhoj P, Pedersen BK (1999) A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci 54(7):M357–M364PubMedGoogle Scholar
  147. 147.
    Borges AH, Silverberg MJ, Wentworth D, Grulich AE, Fatkenheuer G, Mitsuyasu R, Tambussi G, Sabin CA, Neaton JD, Lundgren JD (2013) Predicting risk of cancer during HIV infection: the role of inflammatory and coagulation biomarkers. AIDS (London, England) 27(9):1433–1441. doi: 10.1097/QAD.0b013e32835f6b0c Google Scholar
  148. 148.
    Il’yasova D, Colbert LH, Harris TB, Newman AB, Bauer DC, Satterfield S, Kritchevsky SB (2005) Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomarkers Prev 14(10):2413–2418. doi: 10.1158/1055-9965.EPI-05-0316 PubMedGoogle Scholar
  149. 149.
    de Pablo P, Cooper MS, Buckley CD (2012) Association between bone mineral density and C-reactive protein in a large population-based sample. Arthritis Rheum 64(8):2624–2631. doi: 10.1002/art.34474 PubMedGoogle Scholar
  150. 150.
    Eriksson AL, Moverare-Skrtic S, Ljunggren O, Karlsson M, Mellstrom D, Ohlsson C (2013) High sensitive CRP is an independent risk factor for all fractures and vertebral fractures in elderly men: The MrOS Sweden study. J Bone Min Res. doi: 10.1002/jbmr.2037 Google Scholar
  151. 151.
    Ding C, Parameswaran V, Udayan R, Burgess J, Jones G (2008) Circulating levels of inflammatory markers predict change in bone mineral density and resorption in older adults: a longitudinal study. J Clin Endocrinol Metab 93(5):1952–1958. doi: 10.1210/jc.2007-2325 PubMedGoogle Scholar
  152. 152.
    Scheidt-Nave C, Bismar H, Leidig-Bruckner G, Woitge H, Seibel MJ, Ziegler R, Pfeilschifter J (2001) Serum interleukin 6 is a major predictor of bone loss in women specific to the first decade past menopause. J Clin Endocrinol Metab 86(5):2032–2042PubMedGoogle Scholar
  153. 153.
    Margolick J, Jacobson L, Lopez J (2012) Frailty and circulating concentrations of proinflammatory cytokines and chemokines in HIV-infected and -uninfected men in the Multicenter AIDS Cohort Study (MACS). Paper presented at the 3rd international workshop on HIV and aging, Baltimore, 5–6 Nov 2012Google Scholar
  154. 154.
    Erlandson KM, Allshouse AA, Jankowski CM, Lee EJ, Rufner KM, Palmer BE, Wilson CC, MaWhinney S, Kohrt WM, Campbell TB (2013) Association of functional impairment with inflammation and immune activation in HIV type 1-infected adults receiving effective antiretroviral therapy. J Infect Dis 208(2):249–259. doi: 10.1093/infdis/jit147 PubMedCentralPubMedGoogle Scholar
  155. 155.
    Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ, Penninx B, Pahor M, Wallace R, Havlik RJ (1999) Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47(6):639–646PubMedGoogle Scholar
  156. 156.
    Walston J, McBurnie MA, Newman A, Tracy RP, Kop WJ, Hirsch CH, Gottdiener J, Fried LP (2002) Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the Cardiovascular Health Study. Arch Intern Med 162(20):2333–2341PubMedGoogle Scholar
  157. 157.
    Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, Robinson J, Huang Y, Epling L, Martin JN, Deeks SG, Meinert CL, Van Natta ML, Jabs DA, Lederman MM (2014) Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J Infect Dis 210(8):1228–1238. doi: 10.1093/infdis/jiu238 PubMedCentralPubMedGoogle Scholar
  158. 158.
    Kelesidis T, Kendall MA, Yang OO, Hodis HN, Currier JS (2012) Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV-1 infection. J Infect Dis 206(10):1558–1567PubMedCentralPubMedGoogle Scholar
  159. 159.
    Blodget E, Shen C, Aldrovandi G, Rollie A, Gupta SK, Stein JH, Dube MP (2012) Relationship between microbial translocation and endothelial function in HIV infected patients. PLoS One [Electronic Resource] 7(8), e42624Google Scholar
  160. 160.
    Pedersen KK, Pedersen M, Troseid M, Gaardbo JC, Lund TT, Thomsen C, Gerstoft J, Kvale D, Nielsen SD (2013) Microbial translocation in HIV infection is associated with dyslipidemia, insulin resistance, and risk of myocardial infarction. J Acquir Immune Defic Syndr. doi: 10.1097/QAI.0b013e31829f919d Google Scholar
  161. 161.
    Manner IW, Baekken M, Kvale D, Oektedalen O, Pedersen M, Nielsen SD, Nowak P, Os I, Trøseid M (2013) Markers of microbial translocation predict hypertension in HIV-infected individuals. HIV Med 14(6):354–361. doi: 10.1111/hiv.12015 PubMedGoogle Scholar
  162. 162.
    Lassenius MI, Pietilainen KH, Kaartinen K, Pussinen PJ, Syrjanen J, Forsblom C, Porsti I, Rissanen A, Kaprio J, Mustonen J, Groop PH, Lehto M (2011) Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34(8):1809–1815. doi: 10.2337/dc10-2197 PubMedCentralPubMedGoogle Scholar
  163. 163.
    Gonzalez-Quintela A, Alonso M, Campos J, Vizcaino L, Loidi L, Gude F (2013) Determinants of serum concentrations of lipopolysaccharide-binding protein (LBP) in the adult population: the role of obesity. PLoS One 8(1), e54600. doi: 10.1371/journal.pone.0054600 PubMedCentralPubMedGoogle Scholar
  164. 164.
    Vassallo M, Dunais B, Durant J, Carsenti-Dellamonica H, Harvey-Langton A, Cottalorda J, Ticchioni M, Laffon M, Lebrun-Frenay C, Dellamonica P, Pradier C (2013) Relevance of lipopolysaccharide levels in HIV-associated neurocognitive impairment: the Neuradapt study. J Neurovirol 19(4):376–382. doi: 10.1007/s13365-013-0181-y PubMedGoogle Scholar
  165. 165.
    Marks MA, Rabkin CS, Engels EA, Busch E, Kopp W, Rager H, Goedert JJ, Chaturvedi AK (2013) Markers of microbial translocation and risk of AIDS-related lymphoma. AIDS (London, England) 27(3):469–474. doi: 10.1097/QAD.0b013e32835c1333 Google Scholar
  166. 166.
    Merlini E, Luzi K, Suardi E, Barassi A, Cerrone M, Martinez JS, Bai F, D’Eril GV, Monforte AD, Marchetti G (2012) T-cell phenotypes, apoptosis and inflammation in HIV+ patients on virologically effective cART with early atherosclerosis. PLoS One 7(9), e46073. doi: 10.1371/journal.pone.0046073 PubMedCentralPubMedGoogle Scholar
  167. 167.
    Longenecker CT, Jiang Y, Orringer CE, Gilkeson RC, Debanne S, Funderburg NT, Lederman MM, Storer N, Labbato DE, McComsey GA (2014) Soluble CD14 is independently associated with coronary calcification and extent of subclinical vascular disease in treated HIV infection. AIDS (London, England) 28(7):969–977. doi: 10.1097/QAD.0000000000000158 Google Scholar
  168. 168.
    Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J, Henstridge DC, Maisa A, Hearps AC, Lewin SR, Landay A, Jaworowski A, McCune JM, Crowe SM (2013) Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. AIDS (London, England). doi: 10.1097/QAD.0000000000000128
  169. 169.
    Reiner AP, Lange EM, Jenny NS, Chaves PHM, Ellis J, Li J, Walston J, Lange LA, Cushman M, Tracy RP (2013) Soluble CD14: genomewide association analysis and relationship to cardiovascular risk and mortality in older adults. Arterioscler Thromb Vasc Biol 33(1):158–164. doi: 10.1161/atvbaha.112.300421 PubMedGoogle Scholar
  170. 170.
    Subramanian S, Tawakol A, Burdo TH, Abbara S, Wei J, Vijayakumar J, Corsini E, Abdelbaky A, Zanni MV, Hoffmann U, Williams KC, Lo J, Grinspoon SK (2012) Arterial inflammation in patients with HIV. JAMA 308(4):379–386. doi: 10.1001/jama.2012.6698 PubMedCentralPubMedGoogle Scholar
  171. 171.
    Burdo TH, Lo J, Abbara S, Wei J, Delelys ME, Preffer F, Rosenberg ES, Williams KC, Grinspoon S (2011) Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients. J Infect Dis 204(8):1227–1236. doi: 10.1093/infdis/jir520, jir520 [pii]PubMedCentralPubMedGoogle Scholar
  172. 172.
    Aristoteli LP, Moller HJ, Bailey B, Moestrup SK, Kritharides L (2006) The monocytic lineage specific soluble CD163 is a plasma marker of coronary atherosclerosis. Atherosclerosis 184(2):342–347. doi: 10.1016/j.atherosclerosis.2005.05.004, S0021-9150(05)00339-4 [pii]PubMedGoogle Scholar
  173. 173.
    Fjeldborg K, Christiansen T, Bennetzen M, J Møller H, Pedersen SB, Richelsen BR (2013) The macrophage-specific serum marker, soluble CD163, is increased in obesity and reduced after dietary-induced weight loss. Obesity (Silver Spring). doi: 10.1002/oby.20376 Google Scholar
  174. 174.
    Zanni MV, Burdo TH, Makimura H, Williams KC, Grinspoon SK (2012) Relationship between monocyte/macrophage activation marker soluble CD163 and insulin resistance in obese and normal-weight subjects. Clin Endocrinol (Oxf) 77(3):385–390. doi: 10.1111/j.1365-2265.2011.04284.x Google Scholar
  175. 175.
    Moller HJ, Frikke-Schmidt R, Moestrup SK, Nordestgaard BG, Tybjaerg-Hansen A (2011) Serum soluble CD163 predicts risk of type 2 diabetes in the general population. Clin Chem 57(2):291–297. doi: 10.1373/clinchem.2010.154724, clinchem.2010.154724 [pii]PubMedGoogle Scholar
  176. 176.
    Lyons JL, Uno H, Ancuta P, Kamat A, Moore DJ, Singer EJ, Morgello S, Gabuzda D (2011) Plasma sCD14 is a biomarker associated with impaired neurocognitive test performance in attention and learning domains in HIV infection. J Acquir Immune Defic Syndr 57(5):371–379. doi: 10.1097/QAI.1090b1013e3182237e3182254 PubMedCentralPubMedGoogle Scholar
  177. 177.
    Kamat A, Lyons JL, Misra V, Uno H, Morgello S, Singer EJ, Gabuzda D (2012) Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J Acquir Immune Defic Syndr 60(3):234–243. doi: 10.1097/QAI.1090b1013e318256f318253bc PubMedCentralPubMedGoogle Scholar
  178. 178.
    Burdo TH, Weiffenbach A, Woods SP, Letendre S, Ellis RJ, Williams KC (2013) Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS (London, England) 27(9):1387–1395. doi: 10.1097/QAD.0b013e32836010bd Google Scholar
  179. 179.
    Blasko I, Knaus G, Weiss E, Kemmler G, Winkler C, Falkensammer G, Griesmacher A, Wurzner R, Marksteiner J, Fuchs D (2007) Cognitive deterioration in Alzheimer’s disease is accompanied by increase of plasma neopterin. J Psychiatr Res 41(8):694–701. doi: 10.1016/j.jpsychires.2006.02.001 PubMedGoogle Scholar
  180. 180.
    Leng SX, Tian X, Matteini A, Li H, Hughes J, Jain A, Walston JD, Fedarko NS (2011) IL-6-independent association of elevated serum neopterin levels with prevalent frailty in community-dwelling older adults. Age Ageing 40(4):475–481. doi: 10.1093/ageing/afr047, afr047 [pii]PubMedCentralPubMedGoogle Scholar
  181. 181.
    Kaplan RC, Sinclair E, Landay AL, Lurain N, Sharrett AR, Gange SJ, Xue X, Hunt P, Karim R, Kern DM, Hodis HN, Deeks SG (2011) T cell activation and senescence predict subclinical carotid artery disease in HIV-infected women. J Infect Dis 203(4):452–463PubMedCentralPubMedGoogle Scholar
  182. 182.
    Longenecker C, Funderburg N, Jiang Y, Debanne S, Storer N, Labbato D, Lederman M, McComsey G (2013) Markers of inflammation and CD8 T-cell activation, but not monocyte activation, are associated with subclinical carotid artery disease in HIV-infected individuals. HIV Med. doi: 10.1111/hiv.12013 PubMedCentralPubMedGoogle Scholar
  183. 183.
    Kaplan RC, Sinclair E, Landay AL, Lurain N, Sharrett AR, Gange SJ, Xue X, Parrinello CM, Hunt P, Deeks SG, Hodis HN (2011) T cell activation predicts carotid artery stiffness among HIV-infected women. Atherosclerosis 217(1):207–213PubMedCentralPubMedGoogle Scholar
  184. 184.
    Gazzola L, Bellistri GM, Tincati C, Ierardi V, Savoldi A, del Dole A, Tagliabue L, d’Arminio Monforte A, Marchetti G (2013) Association between peripheral T-Lymphocyte activation and impaired bone mineral density in HIV-infected patients. J Transl Med 11:51. doi: 10.1186/1479-5876-11-51 PubMedCentralPubMedGoogle Scholar
  185. 185.
    Lee SA, Sinclair E, Jain V, Huang Y, Epling L, Van Natta M, Meinert CL, Martin JN, McCune JM, Deeks SG, Lederman MM, Hecht FM, Hunt PW (2014) Low proportions of CD28–CD8+ T cells expressing CD57 can be reversed by early ART initiation and predict mortality in treated HIV infection. J Infect Dis 210(3):374–382. doi: 10.1093/infdis/jiu109 PubMedCentralPubMedGoogle Scholar
  186. 186.
    Sanders JL, Fitzpatrick AL, Boudreau RM, Arnold AM, Aviv A, Kimura M, Fried LF, Harris TB, Newman AB (2012) Leukocyte telomere length is associated with noninvasively measured age-related disease: The Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 67(4):409–416. doi: 10.1093/gerona/glr173 PubMedGoogle Scholar
  187. 187.
    Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA (2006) Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care 29(2):283–289PubMedGoogle Scholar
  188. 188.
    Mu Y, Zhang Q, Mei L, Liu X, Yang W, Yu J (2012) Telomere shortening occurs early during gastrocarcinogenesis. Med Oncol 29(2):893–898. doi: 10.1007/s12032-011-9866-3 PubMedGoogle Scholar
  189. 189.
    Chen S, de Craen AJ, Raz Y, Derhovanessian E, Vossen AC, Westendorp RG, Pawelec G, Maier AB (2012) Cytomegalovirus seropositivity is associated with glucose regulation in the oldest old. Results from the Leiden 85-plus Study. Immun Ageing 9(1):18. doi: 10.1186/1742-4933-9-18 PubMedCentralPubMedGoogle Scholar
  190. 190.
    Muhlestein JB, Horne BD, Carlquist JF, Madsen TE, Bair TL, Pearson RR, Anderson JL (2000) Cytomegalovirus seropositivity and C-reactive protein have independent and combined predictive value for mortality in patients with angiographically demonstrated coronary artery disease. Circulation 102(16):1917–1923PubMedGoogle Scholar
  191. 191.
    Hsue PY, Hunt PW, Sinclair E, Bredt B, Franklin A, Killian M, Hoh R, Martin JN, McCune JM, Waters DD, Deeks SG (2006) Increased carotid intima-media thickness in HIV patients is associated with increased cytomegalovirus-specific T-cell responses. AIDS (London, England) 20(18):2275–2283. doi: 10.1097/QAD.0b013e3280108704 Google Scholar
  192. 192.
    Parrinello CM, Sinclair E, Landay AL, Lurain N, Sharrett AR, Gange SJ, Xue X, Hunt PW, Deeks SG, Hodis HN, Kaplan RC (2012) Cytomegalovirus immunoglobulin G antibody is associated with subclinical carotid artery disease among HIV-infected women. J Infect Dis 205(12):1788–1796. doi: 10.1093/infdis/jis276 PubMedCentralPubMedGoogle Scholar
  193. 193.
    Wang GC, Kao WH, Murakami P, Xue QL, Chiou RB, Detrick B, McDyer JF, Semba RD, Casolaro V, Walston JD, Fried LP (2010) Cytomegalovirus infection and the risk of mortality and frailty in older women: a prospective observational cohort study. Am J Epidemiol 171(10):1144–1152. doi: 10.1093/aje/kwq062 PubMedCentralPubMedGoogle Scholar
  194. 194.
    Savva GM, Pachnio A, Kaul B, Morgan K, Huppert FA, Brayne C, Moss PA (2013) Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell 12(3):381–387. doi: 10.1111/acel.12059 PubMedGoogle Scholar
  195. 195.
    Kong CM, Lee XW, Wang X (2013) Telomere shortening in human diseases. FEBS J 280(14):3180–3193. doi: 10.1111/febs.12326 PubMedGoogle Scholar
  196. 196.
    Wang X, Singh S, Jung HY, Yang G, Jun S, Sastry KJ, Park JI (2013) HIV-1 Vpr protein inhibits telomerase activity via the EDD-DDB1-VPRBP E3 ligase complex. J Biol Chem 288(22):15474–15480. doi: 10.1074/jbc.M112.416735 PubMedCentralPubMedGoogle Scholar
  197. 197.
    Comandini A, Naro C, Adamo R, Akbar AN, Lanna A, Bonmassar E, Franzese O (2013) Molecular mechanisms involved in HIV-1-Tat mediated inhibition of telomerase activity in human CD4(+) T lymphocytes. Mol Immunol 54(2):181–192. doi: 10.1016/j.molimm.2012.12.003 PubMedGoogle Scholar
  198. 198.
    Reynoso R, Laufer N, Bolcic F, Quarleri J (2010) Telomerase activity in peripheral blood mononuclear cells from HIV and HIV-HCV coinfected patients. Virus Res 147(2):284–287. doi: 10.1016/j.virusres.2009.11.006 PubMedGoogle Scholar
  199. 199.
    Hukezalie KR, Thumati NR, Cote HC, Wong JM (2012) In vitro and ex vivo inhibition of human telomerase by anti-HIV nucleoside reverse transcriptase inhibitors (NRTIs) but not by non-NRTIs. PLoS One 7(11), e47505. doi: 10.1371/journal.pone.0047505 PubMedCentralPubMedGoogle Scholar
  200. 200.
    Leeansyah E, Cameron PU, Solomon A, Tennakoon S, Velayudham P, Gouillou M, Spelman T, Hearps A, Fairley C, de Smit V, Pierce AB, Armishaw J, Crowe SM, Cooper DA, Koelsch KK, Liu JP, Chuah J, Lewin SR (2013) Inhibition of telomerase activity by human immunodeficiency virus (HIV) nucleos(t)ide reverse transcriptase inhibitors: a potential factor contributing to HIV-associated accelerated aging. J Infect Dis 207(7):1157–1165. doi: 10.1093/infdis/jit006 PubMedGoogle Scholar
  201. 201.
    Mutlu-Turkoglu U, Ilhan E, Oztezcan S, Kuru A, Aykac-Toker G, Uysal M (2003) Age-related increases in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects. Clin Biochem 36(5):397–400PubMedGoogle Scholar
  202. 202.
    Gil L, Siems W, Mazurek B, Gross J, Schroeder P, Voss P, Grune T (2006) Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic Res 40(5):495–505. doi: 10.1080/10715760600592962 PubMedGoogle Scholar
  203. 203.
    Cannizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L (2011) Oxidative stress, inflamm-aging and immunosenescence. J Proteomics 74(11):2313–2323. doi: 10.1016/j.jprot.2011.06.005 PubMedGoogle Scholar
  204. 204.
    Gil L, Martinez G, Gonzalez I, Tarinas A, Alvarez A, Giuliani A, Molina R, Tapanes R, Perez J, Leon OS (2003) Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacol Res 47(3):217–224. doi:S1043661802003201 [pii]PubMedGoogle Scholar
  205. 205.
    Kalinowska M, Bazdar DA, Lederman MM, Funderburg N, Sieg SF (2013) Decreased IL-7 responsiveness is related to oxidative stress in HIV disease. PLoS One 8(3), e58764. doi: 10.1371/journal.pone.0058764 PubMedCentralPubMedGoogle Scholar
  206. 206.
    Mihm S, Ennen J, Pessara U, Kurth R, Droge W (1991) Inhibition of HIV-1 replication and NF-kappa B activity by cysteine and cysteine derivatives. AIDS (London, England) 5(5):497–503Google Scholar
  207. 207.
    Staal FJ, Roederer M, Herzenberg LA, Herzenberg LA (1990) Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci U S A 87(24):9943–9947PubMedCentralPubMedGoogle Scholar
  208. 208.
    Torres RA, Lewis W (2014) Aging and HIV/AIDS: pathogenetic role of therapeutic side effects. Lab Invest 94(2):120–128. doi: 10.1038/labinvest.2013.142 PubMedCentralPubMedGoogle Scholar
  209. 209.
    Lagathu C, Eustace B, Prot M, Frantz D, Gu Y, Bastard JP, Maachi M, Azoulay S, Briggs M, Caron M, Capeau J (2007) Some HIV antiretrovirals increase oxidative stress and alter chemokine, cytokine or adiponectin production in human adipocytes and macrophages. Antivir Ther 12(4):489–500PubMedGoogle Scholar
  210. 210.
    Mandas A, Iorio EL, Congiu MG, Balestrieri C, Mereu A, Cau D, Dessi S, Curreli N (2009) Oxidative imbalance in HIV-1 infected patients treated with antiretroviral therapy. J Biomed Biotechnol 2009:749575. doi: 10.1155/2009/749575 PubMedCentralPubMedGoogle Scholar
  211. 211.
    Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105PubMedGoogle Scholar
  212. 212.
    Deeks SG, Tracy R, Douek DC (2013) Systemic effects of inflammation on health during chronic HIV infection. Immunity 39(4):633–645. doi: 10.1016/j.immuni.2013.10.001 PubMedCentralPubMedGoogle Scholar
  213. 213.
    Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedGoogle Scholar
  214. 214.
    Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, Pedersen C, Ruxrungtham K, Lewin SR, Emery S, Neaton JD, Brenchley JM, Deeks SG, Sereti I, Douek DC (2011) Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis 203(3):780–790. doi: 10.1093/infdis/jiq118, jiq118 [pii]PubMedCentralPubMedGoogle Scholar
  215. 215.
    Westhorpe CL, Maisa A, Spelman T, Hoy JF, Dewar EM, Karapanagiotidis S, Hearps AC, Cheng W, Trevillyan J, Lewin SR, Sviridov D, Elliott JH, Jaworowski A, Dart AM, Crowe SM (2013) Associations between blood monocyte markers and carotid atherosclerosis in HIV-positive patients. Immunol Cell Biol 92(2):133–138. doi: 10.1038/icb.2013.84
  216. 216.
    Tenorio AR, Zheng Y, Bosch RJ, Krishnan S, Rodriguez B, Hunt PW, Plants J, Seth A, Wilson CC, Deeks SG, Lederman MM, Landay AL (2014) Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis 210(8):1248–1259. doi: 10.1093/infdis/jiu254 PubMedCentralPubMedGoogle Scholar
  217. 217.
    Srinivasa S, Fitch KV, Petrow E, Burdo TH, Williams KC, Lo J, Cote HC, Grinspoon SK (2014) Soluble CD163 is associated with shortened telomere length in HIV-infected patients. J Acquir Immune Defic Syndr 67(4):414–418. doi: 10.1097/QAI.0000000000000329 PubMedGoogle Scholar
  218. 218.
    Chew D, Steinberg MB, Thomas P, Swaminathan S, Hodder SL (2014) Evaluation of a smoking cessation program for HIV infected individuals in an urban HIV clinic: challenges and lessons learned. AIDS Res Treat 2014:237834. doi: 10.1155/2014/237834 PubMedCentralPubMedGoogle Scholar
  219. 219.
    Tron L, Lert F, Spire B, Dray-Spira R, Group AN-Vs (2014) Tobacco smoking in HIV-infected versus general population in France: heterogeneity across the various groups of people living with HIV. PLoS One 9(9), e107451. doi: 10.1371/journal.pone.0107451 PubMedCentralPubMedGoogle Scholar
  220. 220.
    Browning KK, Wewers ME, Ferketich AK, Diaz P (2013) Tobacco use and cessation in HIV-infected individuals. Clin Chest Med 34(2):181–190. doi: 10.1016/j.ccm.2013.01.005 PubMedCentralPubMedGoogle Scholar
  221. 221.
    Kalra S, Agrawal N (2013) Diabetes and HIV: current understanding and future perspectives. Curr Diab Rep 13(3):419–427. doi: 10.1007/s11892-013-0369-9 PubMedGoogle Scholar
  222. 222.
    Brown TT, Cole SR, Li X, Kingsley LA, Palella FJ, Riddler SA, Visscher BR, Margolick JB, Dobs AS (2005) Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med 165(10):1179–1184. doi: 10.1001/archinte.165.10.1179 PubMedGoogle Scholar
  223. 223.
    Dube MP (2000) Disorders of glucose metabolism in patients infected with human immunodeficiency virus. Clin Infect Dis 31(6):1467–1475. doi: 10.1086/317491 PubMedGoogle Scholar
  224. 224.
    Lan X, Cheng K, Chandel N, Lederman R, Jhaveri A, Husain M, Malhotra A, Singhal PC (2013) High glucose enhances HIV entry into T cells through upregulation of CXCR4. J Leukoc Biol 94(4):769–777. doi: 10.1189/jlb.0313142 PubMedCentralPubMedGoogle Scholar
  225. 225.
    de Waal R, Cohen K, Maartens G (2013) Systematic review of antiretroviral-associated lipodystrophy: lipoatrophy, but not central fat gain, is an antiretroviral adverse drug reaction. PLoS One 8(5), e63623. doi: 10.1371/journal.pone.0063623 PubMedCentralPubMedGoogle Scholar
  226. 226.
    Souza SJ, Luzia LA, Santos SS, Rondo PH (2013) Lipid profile of HIV-infected patients in relation to antiretroviral therapy: a review. Rev Assoc Med Bras 59(2):186–198. doi: 10.1016/j.ramb.2012.11.003 PubMedGoogle Scholar
  227. 227.
    Galescu O, Bhangoo A, Ten S (2013) Insulin resistance, lipodystrophy and cardiometabolic syndrome in HIV/AIDS. Rev Endocr Metab Disord 14(2):133–140. doi: 10.1007/s11154-013-9247-7 PubMedGoogle Scholar
  228. 228.
    Caron M, Auclairt M, Vissian A, Vigouroux C, Capeau J (2008) Contribution of mitochondrial dysfunction and oxidative stress to cellular premature senescence induced by antiretroviral thymidine analogues. Antivir Ther 13(1):27–38PubMedGoogle Scholar
  229. 229.
    Fowler BJ, Gelfand BD, Kim Y, Kerur N, Tarallo V, Hirano Y, Amarnath S, Fowler DH, Radwan M, Young MT, Pittman K, Kubes P, Agarwal HK, Parang K, Hinton DR, Bastos-Carvalho A, Li S, Yasuma T, Mizutani T, Yasuma R, Wright C, Ambati J (2014) Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 346(6212):1000–1003. doi: 10.1126/science.1261754 PubMedCentralPubMedGoogle Scholar
  230. 230.
    Islam FM, Wu J, Jansson J, Wilson DP (2012) Relative risk of cardiovascular disease among people living with HIV: a systematic review and meta-analysis. HIV Med 13(8):453–468. doi: 10.1111/j.1468-1293.2012.00996.x PubMedGoogle Scholar
  231. 231.
    Sabin CA, Worm SW, Weber R, Reiss P, El-Sadr W, Dabis F, De Wit S, Law M, D’Arminio Monforte A, Friis-Moller N, Kirk O, Pradier C, Weller I, Phillips AN, Lundgren JD (2008) Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet 371(9622):1417–1426. doi: 10.1016/S0140-6736(08)60423-7 PubMedGoogle Scholar
  232. 232.
    Worm SW, Sabin C, Weber R, Reiss P, El-Sadr W, Dabis F, De Wit S, Law M, Monforte AD, Friis-Moller N, Kirk O, Fontas E, Weller I, Phillips A, Lundgren J (2010) Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) study. J Infect Dis 201(3):318–330. doi: 10.1086/649897 PubMedGoogle Scholar
  233. 233.
    Bavinger C, Bendavid E, Niehaus K, Olshen RA, Olkin I, Sundaram V, Wein N, Holodniy M, Hou N, Owens DK, Desai M (2013) Risk of cardiovascular disease from antiretroviral therapy for HIV: a systematic review. PLoS One 8(3), e59551. doi: 10.1371/journal.pone.0059551 PubMedCentralPubMedGoogle Scholar
  234. 234.
    Wohl DA, McComsey G, Tebas P, Brown TT, Glesby MJ, Reeds D, Shikuma C, Mulligan K, Dube M, Wininger D, Huang J, Revuelta M, Currier J, Swindells S, Fichtenbaum C, Basar M, Tungsiripat M, Meyer W, Weihe J, Wanke C (2006) Current concepts in the diagnosis and management of metabolic complications of HIV infection and its therapy. Clin Infect Dis 43(5):645–653. doi: 10.1086/507333 PubMedGoogle Scholar
  235. 235.
    Yin MT, Zhang CA, McMahon DJ, Ferris DC, Irani D, Colon I, Cremers S, Shane E (2012) Higher rates of bone loss in postmenopausal HIV-infected women: a longitudinal study. J Clin Endocrinol Metab 97(2):554–562. doi: 10.1210/jc.2011-2197 PubMedCentralPubMedGoogle Scholar
  236. 236.
    Hoy J (2011) Bone, fracture and frailty. Curr Opin HIV AIDS 6(4):309–314. doi: 10.1097/COH.0b013e3283478741 PubMedGoogle Scholar
  237. 237.
    Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, Blazar BR, Rodriguez B, Teixeira-Johnson L, Landay A, Martin JN, Hecht FM, Picker LJ, Lederman MM, Deeks SG, Douek DC (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12(12):1365–1371PubMedGoogle Scholar
  238. 238.
    Douek D (2007) HIV disease progression: immune activation, microbes, and a leaky gut. Top HIV Med 15(4):114–117PubMedGoogle Scholar
  239. 239.
    Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, Reilly C, Carlis J, Miller CJ, Haase AT (2005) Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434(7037):1148–1152. doi: 10.1038/nature03513 PubMedGoogle Scholar
  240. 240.
    Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A, Dandekar S (2003) Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 77(21):11708–11717PubMedCentralPubMedGoogle Scholar
  241. 241.
    Ciccone EJ, Greenwald JH, Lee PI, Biancotto A, Read SW, Yao MA, Hodge JN, Thompson WL, Kovacs SB, Chairez CL, Migueles SA, Kovacs JA, Margolis LB, Sereti I (2011) CD4+ T cells, including Th17 and cycling subsets, are intact in the gut mucosa of HIV-1-infected long-term nonprogressors. J Virol 85(12):5880–5888. doi: 10.1128/JVI.02643-10 PubMedCentralPubMedGoogle Scholar
  242. 242.
    Chung CY, Alden SL, Funderburg NT, Fu P, Levine AD (2014) Progressive proximal-to-distal reduction in expression of the tight junction complex in colonic epithelium of virally-suppressed HIV+ individuals. PLoS Pathog 10(6), e1004198. doi: 10.1371/journal.ppat.1004198 PubMedCentralPubMedGoogle Scholar
  243. 243.
    Vesterbacka J, Nowak P, Barqasho B, Abdurahman S, Nystrom J, Nilsson S, Funaoka H, Kanda T, Andersson LM, Gisslen M, Sonnerborg A (2013) Kinetics of microbial translocation markers in patients on efavirenz or lopinavir/r based antiretroviral therapy. PLoS One 8(1), e55038. doi: 10.1371/journal.pone.0055038 PubMedCentralPubMedGoogle Scholar
  244. 244.
    Marchetti G, Cozzi-Lepri A, Merlini E, Bellistri GM, Castagna A, Galli M, Verucchi G, Antinori A, Costantini A, Giacometti A, di Caro A, D’Arminio Monforte A (2011) Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4+ cell count. AIDS 25(11):1385–1394. doi: 10.1097/QAD.0b013e3283471d10 PubMedGoogle Scholar
  245. 245.
    Nowroozalizadeh S, Mansson F, da Silva Z, Repits J, Dabo B, Pereira C, Biague A, Albert J, Nielsen J, Aaby P, Fenyo EM, Norrgren H, Holmgren B, Jansson M (2010) Microbial translocation correlates with the severity of both HIV-1 and HIV-2 infections. J Infect Dis 201(8):1150–1154. doi: 10.1086/651430 PubMedGoogle Scholar
  246. 246.
    Man AL, Gicheva N, Nicoletti C (2014) The impact of ageing on the intestinal epithelial barrier and immune system. Cell Immunol 289(1–2):112–118. doi: 10.1016/j.cellimm.2014.04.001 PubMedGoogle Scholar
  247. 247.
    Rera M, Clark RI, Walker DW (2012) Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci U S A 109(52):21528–21533. doi: 10.1073/pnas.1215849110 PubMedCentralPubMedGoogle Scholar
  248. 248.
    Stehle JR Jr, Leng X, Kitzman DW, Nicklas BJ, Kritchevsky SB, High KP (2012) Lipopolysaccharide-binding protein, a surrogate marker of microbial translocation, is associated with physical function in healthy older adults. J Gerontol A Biol Sci Med Sci 67(11):1212–1218. doi: 10.1093/gerona/gls178 PubMedCentralPubMedGoogle Scholar
  249. 249.
    Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C, French A, Demarais P, Sun Y, Koenig L, Cox S, Engen P, Chakradeo P, Abbasi R, Gorenz A, Burns C, Landay A (2014) A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog 10(2), e1003829. doi: 10.1371/journal.ppat.1003829 PubMedCentralPubMedGoogle Scholar
  250. 250.
    Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK, Gianella S, Siewe B, Smith DM, Landay AL, Robertson CE, Frank DN, Wilson CC (2014) An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol 7(4):983–994. doi: 10.1038/mi.2013.116 PubMedCentralPubMedGoogle Scholar
  251. 251.
    Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, Hernandez RD, Lederman MM, Huang Y, Somsouk M, Deeks SG, Hunt PW, Lynch SV, McCune JM (2013) Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med 5(193):193ra191. doi: 10.1126/scitranslmed.3006438 Google Scholar
  252. 252.
    Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, Knight R, Fontenot AP, Palmer BE (2013) Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 14(3):329–339. doi: 10.1016/j.chom.2013.08.006 PubMedGoogle Scholar
  253. 253.
    Perez-Santiago J, Gianella S, Massanella M, Spina CA, Karris MY, Var SR, Patel D, Jordan PS, Young JA, Little SJ, Richman DD, Smith DM (2013) Gut Lactobacillales are associated with higher CD4 and less microbial translocation during HIV infection. AIDS (London, England) 27(12):1921–1931Google Scholar
  254. 254.
    Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20(4):202–213. doi: 10.1002/rmv.655 PubMedGoogle Scholar
  255. 255.
    Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19(1):47–56PubMedGoogle Scholar
  256. 256.
    Derhovanessian E, Larbi A, Pawelec G (2009) Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr Opin Immunol 21(4):440–445PubMedGoogle Scholar
  257. 257.
    Chidrawar S, Khan N, Wei W, McLarnon A, Smith N, Nayak L, Moss P (2009) Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol 155(3):423–432. doi: 10.1111/j.1365-2249.2008.03785.x PubMedCentralPubMedGoogle Scholar
  258. 258.
    Derhovanessian E, Maier AB, Hahnel K, Beck R, de Craen AJ, Slagboom EP, Westendorp RG, Pawelec G (2011) Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J Gen Virol 92(Pt 12):2746–2756. doi: 10.1099/vir.0.036004-0 PubMedGoogle Scholar
  259. 259.
    Ouyang Q, Wagner WM, Wikby A, Walter S, Aubert G, Dodi AI, Travers P, Pawelec G (2003) Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 23(4):247–257PubMedGoogle Scholar
  260. 260.
    Ouyang Q, Wagner WM, Zheng W, Wikby A, Remarque EJ, Pawelec G (2004) Dysfunctional CMV-specific CD8(+) T cells accumulate in the elderly. Exp Gerontol 39(4):607–613. doi: 10.1016/j.exger.2003.11.016 PubMedGoogle Scholar
  261. 261.
    Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE (2011) Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One 6(2), e16103. doi: 10.1371/journal.pone.0016103 PubMedCentralPubMedGoogle Scholar
  262. 262.
    Arama V, Mihailescu R, Radulescu M, Arama SS, Streinu-Cercel A, Youle M, Group C-HS (2014) Clinical relevance of the plasma load of cytomegalovirus in patients infected with HIV-A survival analysis. J Med Virol 86(11):1821–1827. doi: 10.1002/jmv.24027 PubMedGoogle Scholar
  263. 263.
    Stone SF, Price P, French MA (2006) Cytomegalovirus (CMV)-specific CD8+ T cells in individuals with HIV infection: correlation with protection from CMV disease. J Antimicrob Chemother 57(4):585–588. doi: 10.1093/jac/dkl049 PubMedGoogle Scholar
  264. 264.
    Anuradha B, Mane Pratibha M, Vijayadurga S (2011) The reactivation of the cytomegalovirus (CMV) infection in HIV infected patients. J Clin Diagn Res 5(4):749–751Google Scholar
  265. 265.
    Naeger DM, Martin JN, Sinclair E, Hunt PW, Bangsberg DR, Hecht F, Hsue P, McCune JM, Deeks SG (2010) Cytomegalovirus-specific T cells persist at very high levels during long-term antiretroviral treatment of HIV disease. PLoS One 5(1), e8886. doi: 10.1371/journal.pone.0008886 PubMedCentralPubMedGoogle Scholar
  266. 266.
    Barrett L, Stapleton SN, Fudge NJ, Grant MD (2014) Immune resilience in HIV-infected individuals seronegative for cytomegalovirus. AIDS (London, England) 28(14):2045–2049. doi: 10.1097/QAD.0000000000000405 Google Scholar
  267. 267.
    Solana R, Tarazona R, Aiello AE, Akbar AN, Appay V, Beswick M, Bosch JA, Campos C, Cantisan S, Cicin-Sain L, Derhovanessian E, Ferrando-Martinez S, Frasca D, Fulop T, Govind S, Grubeck-Loebenstein B, Hill A, Hurme M, Kern F, Larbi A, Lopez-Botet M, Maier AB, McElhaney JE, Moss P, Naumova E, Nikolich-Zugich J, Pera A, Rector JL, Riddell N, Sanchez-Correa B, Sansoni P, Sauce D, van Lier R, Wang GC, Wills MR, Zielinski M, Pawelec G (2012) CMV and immunosenescence: from basics to clinics. Immun Ageing 9(1):23. doi: 10.1186/1742-4933-9-23 PubMedCentralPubMedGoogle Scholar
  268. 268.
    Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, Brun SC, Kempf DJ, Mellors JW, Coffin JM, King MS (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A 105(10):3879–3884PubMedCentralPubMedGoogle Scholar
  269. 269.
    Schacker T, Zeh J, Hu HL, Hill E, Corey L (1998) Frequency of symptomatic and asymptomatic herpes simplex virus type 2 reactivations among human immunodeficiency virus-infected men. J Infect Dis 178(6):1616–1622PubMedGoogle Scholar
  270. 270.
    Kim HN, Meier A, Huang ML, Kuntz S, Selke S, Celum C, Corey L, Wald A (2006) Oral herpes simplex virus type 2 reactivation in HIV-positive and -negative men. J Infect Dis 194(4):420–427. doi: 10.1086/505879 PubMedGoogle Scholar
  271. 271.
    Dehee A, Asselot C, Piolot T, Jacomet C, Rozenbaum W, Vidaud M, Garbarg-Chenon A, Nicolas JC (2001) Quantification of Epstein-Barr virus load in peripheral blood of human immunodeficiency virus-infected patients using real-time PCR. J Med Virol 65(3):543–552PubMedGoogle Scholar
  272. 272.
    Bhardwaj N, Maldarelli F, Mellors J, Coffin JM (2014) HIV-1 infection leads to increased transcription of human endogenous retrovirus HERV-K (HML-2) proviruses in vivo but not to increased virion production. J Virol 88(19):11108–11120. doi: 10.1128/JVI.01623-14 PubMedCentralPubMedGoogle Scholar
  273. 273.
    Contreras-Galindo R, Kaplan MH, Markovitz DM, Lorenzo E, Yamamura Y (2006) Detection of HERV-K(HML-2) viral RNA in plasma of HIV type 1-infected individuals. AIDS Res Hum Retroviruses 22(10):979–984. doi: 10.1089/aid.2006.22.979 PubMedGoogle Scholar
  274. 274.
    Gonzalez-Hernandez MJ, Swanson MD, Contreras-Galindo R, Cookinham S, King SR, Noel RJ Jr, Kaplan MH, Markovitz DM (2012) Expression of human endogenous retrovirus type K (HML-2) is activated by the Tat protein of HIV-1. J Virol 86(15):7790–7805. doi: 10.1128/JVI.07215-11 PubMedCentralPubMedGoogle Scholar
  275. 275.
    Freiberg MS, Chang CC, Skanderson M, McGinnis K, Kuller LH, Kraemer KL, Rimland D, Goetz MB, Butt AA, Rodriguez Barradas MC, Gibert C, Leaf D, Brown ST, Samet J, Kazis L, Bryant K, Justice AC, Veterans Aging Cohort S (2011) The risk of incident coronary heart disease among veterans with and without HIV and hepatitis C. Circ Cardiovasc Qual Outcomes 4(4):425–432. doi: 10.1161/CIRCOUTCOMES.110.957415 PubMedCentralPubMedGoogle Scholar
  276. 276.
    Maalouf NM, Zhang S, Drechsler H, Brown GR, Tebas P, Bedimo R (2013) Hepatitis C co-infection and severity of liver disease as risk factors for osteoporotic fractures among HIV-infected patients. J Bone Min Res 28(12):2577–2583. doi: 10.1002/jbmr.1988 Google Scholar
  277. 277.
    Richardson JL, Nowicki M, Danley K, Martin EM, Cohen MH, Gonzalez R, Vassileva J, Levine AM (2005) Neuropsychological functioning in a cohort of HIV- and hepatitis C virus-infected women. AIDS (London, England) 19(15):1659–1667Google Scholar
  278. 278.
    Salter ML, Lau B, Mehta SH, Go VF, Leng S, Kirk GD (2013) Correlates of elevated interleukin-6 and C-reactive protein in persons with or at high risk for HCV and HIV infections. J Acquir Immune Defic Syndr 64(5):488–495. doi: 10.1097/QAI.0b013e3182a7ee2e PubMedGoogle Scholar
  279. 279.
    Zanet DL, Thorne A, Singer J, Maan EJ, Sattha B, Le Campion A, Soudeyns H, Pick N, Murray M, Money DM, Cote HC, Therapy CETGoH, Aging C (2014) Association between short leukocyte telomere length and HIV infection in a cohort study: No evidence of a relationship with antiretroviral therapy. Clin Infect Dis 58(9):1322–1332. doi: 10.1093/cid/ciu051 PubMedGoogle Scholar
  280. 280.
    Bentwich Z, Maartens G, Torten D, Lal AA, Lal RB (2000) Concurrent infections and HIV pathogenesis. AIDS (London, England) 14(14):2071–2081Google Scholar
  281. 281.
    Chang CC, Crane M, Zhou J, Mina M, Post JJ, Cameron BA, Lloyd AR, Jaworowski A, French MA, Lewin SR (2013) HIV and co-infections. Immunol Rev 254(1):114–142. doi: 10.1111/imr.12063 PubMedCentralPubMedGoogle Scholar
  282. 282.
    Alemu A, Shiferaw Y, Addis Z, Mathewos B, Birhan W (2013) Effect of malaria on HIV/AIDS transmission and progression. Parasites & Vectors 6:18. doi: 10.1186/1756-3305-6-18 Google Scholar
  283. 283.
    Calza L, Trapani F, Bartoletti M, Manfredi R, Colangeli V, Borderi M, Grossi G, Motta R, Viale P (2012) Statin therapy decreases serum levels of high-sensitivity C-reactive protein and tumor necrosis factor-α in HIV-infected patients treated with ritonavir-boosted protease inhibitors. HIV Clin Trials 13(3):153–161. doi: 10.1310/hct1303-153 PubMedGoogle Scholar
  284. 284.
    Tenorio AR, Chan ES, Bosch RJ, Macatangay BJ, Read SW, Yesmin S, Taiwo B, Margolis DM, Jacobson JM, Landay AL, Wilson CC, for the AT (2014) Rifaximin has a marginal impact on microbial translocation, T-cell activation and inflammation in HIV-positive immune Non-responders to antiretroviral therapy – ACTG A5286. J Infect Dis. doi: 10.1093/infdis/jiu515 PubMedCentralGoogle Scholar
  285. 285.
    Paton Ni GRLDDT et al (2012) Effects of Hydroxychloroquine on immune activation and disease progression among hiv-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA 308(4):353–361. doi: 10.1001/jama.2012.6936 PubMedGoogle Scholar
  286. 286.
    Baker JV, Huppler Hullsiek K, Prosser R, Duprez D, Grimm R, Tracy RP, Rhame F, Henry K, Neaton JD (2012) Angiotensin converting enzyme inhibitor and HMG-CoA reductase inhibitor as adjunct treatment for persons with HIV infection: a feasibility randomized trial. PLoS One 7(10), e46894. doi: 10.1371/journal.pone.0046894 PubMedCentralPubMedGoogle Scholar
  287. 287.
    Sandler NG, Zhang X, Bosch RJ, Funderburg NT, Choi AI, Robinson JK, Fine DM, Coombs RW, Jacobson JM, Landay AL, Douek DC, Tressler R, Read SW, Wilson CC, Deeks SG, Lederman MM, Gandhi RT, Team ACTGA (2014) Sevelamer does not decrease lipopolysaccharide or soluble CD14 levels but decreases soluble tissue factor, low-density lipoprotein (LDL) cholesterol, and oxidized LDL cholesterol levels in individuals with untreated HIV infection. J Infect Dis 210(10):1549–1554. doi: 10.1093/infdis/jiu305 PubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Anna Hearps
    • 1
  • Katherine Schafer
    • 2
  • Kevin High
    • 2
  • Alan Landay
    • 3
  1. 1.Centre for Biomedical Research, Burnet InstituteMelbourneAustralia
  2. 2.Department of Internal Medicine, Section on Infectious DiseasesWake Forest School of MedicineWinston-SalemUSA
  3. 3.Department of Immunology/MicrobiologyRush University Medical CenterChicagoUSA

Personalised recommendations