Modeling Decisions for Artificial Intelligence

MDAI 2015: Modeling Decisions for Artificial Intelligence pp 167-179 | Cite as

Optimized and Parallel Query Processing in Similarity-Based Databases

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9321)

Abstract

We present a novel method of query execution in similarity-based databases which adopts techniques commonly used in traditional programming language compilers. Our method is based on decomposition of relational algebra operators into a small set of simple operations which are subject of further optimizations. It shows up that with a small set of optimizations rules our system itself is able to infer efficient algorithms for data processing. Furthermore, operations we propose are compatible with the map/reduce approach to data processing, and thus, allows for implicitly parallel or distributed data processing.

Keywords

Domain similarities Relational model of data Query execution Query optimization Fuzzy logic Parallel data processing 

References

  1. 1.
    Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools, 2nd edn. Addison-Wesley, Boston (2006)Google Scholar
  2. 2.
    Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers, Norwell (2002)CrossRefGoogle Scholar
  3. 3.
    Belohlavek, R., Opichal, S., Vychodil, V.: Relational algebra for ranked tables with similarities: properties and implementation. In: Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 140–151. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  4. 4.
    Bělohlávek, R., Vychodil, V.: Data tables with similarity relations: functional dependencies, complete rules and non-redundant bases. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 644–658. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  5. 5.
    Belohlavek, R., Vychodil, V.: Logical foundations for similarity-based databases. In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds.) DASFAA 2009. LNCS, vol. 5667, pp. 137–151. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    Belohlavek, R., Vychodil, V.: Query systems in similarity-based databases: logical foundations, expressive power, and completeness. In: ACM Symposium on Applied Computing (SAC), pp. 1648–1655. ACM (2010)Google Scholar
  7. 7.
    Buckles, B.P., Petry, F.E.: A fuzzy representation of data for relational databases. Fuzzy Sets Syst. 7(3), 213–226 (1982)CrossRefMATHGoogle Scholar
  8. 8.
    Cintula, P., Hájek, P.: Triangular norm based predicate fuzzy logics. Fuzzy Sets Syst. 161, 311–346 (2010)CrossRefMATHGoogle Scholar
  9. 9.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Brewer, E., Chen, P. (eds.) OSDI, pp. 137–150, USENIX Association (2004)Google Scholar
  10. 10.
    Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124(3), 271–288 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fagin, R.: Combining fuzzy information from multiple systems. J. Comput. Syst. Sci. 58(1), 83–99 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Goguen, J.A.: The logic of inexact concepts. Synthese 19, 325–373 (1979)CrossRefGoogle Scholar
  13. 13.
    Gottwald, S.: Mathematical fuzzy logics. Bull. Symbolic Logic 14(2), 210–239 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998) CrossRefMATHGoogle Scholar
  15. 15.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 40(4), 11 (2008)CrossRefGoogle Scholar
  16. 16.
    Kieling, W., Köstler, G.: Preference SQL–design, implementation, experiences (2002)Google Scholar
  17. 17.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, 1st edn. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  18. 18.
    Krajca, P., Vychodil, V.: Foundations of relational similarity-based query language resiql. In: FOCI, pp. 15–23. IEEE (2013)Google Scholar
  19. 19.
    Krajca, P., Vychodil, V.: Query optimization strategies in similarity-based databases. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Megías, D. (eds.) MDAI 2013. LNCS, vol. 8234, pp. 179–191. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: Ranksql: query algebra and optimization for relational top-k queries. In: Proceedings of the 2005 ACM SIGMOD, pp. 131–142 (2005)Google Scholar
  21. 21.
    Maier, D.: The Theory of Relational Databases. Computer Science Press, Cambridge (1983)MATHGoogle Scholar
  22. 22.
    Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.-J., Shenker, S., Stoica, S.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (NSDI 2012), USENIX Association, Berkeley (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations