International Conference on Image Analysis and Processing

ICIAP 2015: Image Analysis and Processing — ICIAP 2015 pp 722-732 | Cite as

Abnormality Detection with Improved Histogram of Oriented Tracklets

  • Hossein Mousavi
  • Moin Nabi
  • Hamed Kiani Galoogahi
  • Alessandro Perina
  • Vittorio Murino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)

Abstract

Recently the histogram of oriented tracklets (HOT) was shown to be an efficient video representation for abnormality detection and achieved state-of-the-arts on the available datasets. Unlike standard video descriptors that mainly employ low level motion features, e.g. optical flow, the HOT descriptor simultaneously encodes magnitude and orientation of tracklets as a mid-level representation over crowd motions. However, extracting tracklets in HOT suffers from poor salient point initialization and tracking drift in the presence of occlusion. Moreover, count-based HOT histogramming does not properly take into account the motion characteristics of abnormal motions. This paper extends the HOT by addressing these drawbacks introducing an enhanced version of HOT, named Improved HOT. First, we propose to initialize salient points in each frame instead of the first frame, as the HOT does. Second, we replace the naive count-based histogramming by the richer statistics of crowd movement (i.e., motion distribution). The evaluation of the Improved HOT on different datasets, namely UCSD, BEHAVE and UMN, yields compelling results in abnormality detection, by outperforming the original HOT and the state-of-the-art descriptors based on optical flow, dense trajectories and the social force models.

Keywords

Histogram of oriented tracklets Abnormality detection Tracklets Crowd motion analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wijermans, N., Jorna, R., Jager, W., Vliet, T.v.: Modelling crowd dynamics, influence factors related to the probability of a riot. In: Proceedings of the Fourth European Social Simualtion Association Conference (ESSA), Toulouse University of Social Sciences (2007)Google Scholar
  2. 2.
    Junior, S.J., et al.: Crowd analysis using computer vision techniques. IEEE Signal Processing Magazine 27(5), 66–77 (2010)Google Scholar
  3. 3.
    Haque, M., Murshed, M.: Panic-driven event detection from surveillance video stream without track and motion features. In: 2010 IEEE International Conference on Multimedia and Expo (ICME), pp. 173–178. IEEE (2010)Google Scholar
  4. 4.
    Hassner, T., Itcher, Y., Kliper-Gross, O.: Violent flows: real-time detection of violent crowd behavior. In: CVPRW, pp. 1–6. IEEE (2012)Google Scholar
  5. 5.
    Wu, S., Wong, H.S., Yu, Z.: A bayesian model for crowd escape behavior detection. IEEE Transactions on Circuits and Systems for Video Technology 24(1), 85–98 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhong, H., Shi, J., Visontai, M.: Detecting unusual activity in video. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2004, vol. 2, p. II-819. IEEE (2004)Google Scholar
  7. 7.
    Xiang, T., Gong, S.: Video behavior profiling for anomaly detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(5), 893–908 (2008)CrossRefGoogle Scholar
  8. 8.
    Reddy, V., Sanderson, C., Lovell, B.C.: Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture. In: 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 55–61. IEEE (2011)Google Scholar
  9. 9.
    Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2009, pp. 935–942. IEEE (2009)Google Scholar
  10. 10.
    Kim, J., Grauman, K.: Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2009, pp. 2921–2928. IEEE (2009)Google Scholar
  11. 11.
    Cui, X., Liu, Q., Gao, M., Metaxas, D.N.: Abnormal detection using interaction energy potentials. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3161–3167. IEEE (2011)Google Scholar
  12. 12.
    Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2009, pp. 1446–1453. IEEE (2009)Google Scholar
  13. 13.
    Boiman, O., Irani, M.: Detecting irregularities in images and in video. International Journal of Computer Vision 74(1), 17–31 (2007)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(3), 539–555 (2009)CrossRefGoogle Scholar
  15. 15.
    Fu, Z., Hu, W., Tan, T.: Similarity based vehicle trajectory clustering and anomaly detection. In: IEEE International Conference on Image Processing. ICIP 2005, vol. 2, p. II-602. IEEE (2005)Google Scholar
  16. 16.
    Alvar, M., Torsello, A., Sanchez-Miralles, A., Armingol, J.M.: Abnormal behavior detection using dominant sets. Machine Vision and Applications, 1–18 (2014)Google Scholar
  17. 17.
    Mousavi, H., Nabi, M., Kiani, H., Perina, A., Murino, V.: Crowd motion monitoring using tracklet-based commotion measure. In: IEEE International Conference on Image Processing (ICIP). IEEE (2015)Google Scholar
  18. 18.
    Mousavi, H., Mohammadi, S., Perina, A., Chellali, R., Murino, V.: Analyzing tracklets for the detection of abnormal crowd behavior. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 148–155. IEEE (2015)Google Scholar
  19. 19.
    Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1975–1981. IEEE (2010)Google Scholar
  20. 20.
    Blunsden, S., Fisher, R.: The behave video dataset: ground truthed video for multi-person behavior classification. Annals of the BMVA 4, 1–12 (2010)Google Scholar
  21. 21.
    Makris, D., Ellis, T.: Learning semantic scene models from observing activity in visual surveillance. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 35(3), 397–408 (2005)CrossRefGoogle Scholar
  22. 22.
    Hu, W., Xiao, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: A system for learning statistical motion patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9), 1450–1464 (2006)CrossRefGoogle Scholar
  23. 23.
    Zhou, B., Wang, X., Tang, X.: Random field topic model for semantic region analysis in crowded scenes from tracklets. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3441–3448. IEEE (2011)Google Scholar
  24. 24.
    Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(3), 555–560 (2008)CrossRefGoogle Scholar
  25. 25.
    Kim, J., Grauman, K.: Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: CVPR, pp. 2921–2928. IEEE (2009)Google Scholar
  26. 26.
    Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3449–3456. IEEE (2011)Google Scholar
  27. 27.
    Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2054–2060. IEEE (2010)Google Scholar
  28. 28.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of machine Learning research 3, 993–1022 (2003)MATHGoogle Scholar
  29. 29.
    Li, W., Mahadevan, V., Vasconcelos, N.: Anomaly detection and localization in crowded scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(1), 18–32 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hossein Mousavi
    • 1
  • Moin Nabi
    • 1
  • Hamed Kiani Galoogahi
    • 1
  • Alessandro Perina
    • 1
  • Vittorio Murino
    • 1
    • 2
  1. 1.Pattern Analysis and Computer Vision Department (PAVIS)Istituto Italiano di Tecnologia (IIT)GenovaItaly
  2. 2.Dipartimento di InformaticaUniversity of VeronaVeronaItaly

Personalised recommendations