Detection of Human Movements with Pressure Floor Sensors

  • Martino Lombardi
  • Roberto Vezzani
  • Rita Cucchiara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9280)


Following the recent Internet of Everything (IoE) trend, several general-purpose devices have been proposed to acquire as much information as possible from the environment and from people interacting with it. Among the others, sensing floors are recently attracting the interest of the research community. In this paper, we propose a new model to store and process floor data. The model does not assume a regular grid distribution of the sensing elements and is based on the ground reaction force (GRF) concept, widely used in biomechanics. It allows the correct detection and tracking of people, outperforming the common background subtraction schema adopted in the past. Several tests on a real sensing floor prototype are reported and discussed.


Human-computer interaction Sensing floor Pressure analysis Center of pressure Ground reaction force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anlauff, J., Großhauser, T., Hermann, T.: Tactiles: a low-cost modular tactile sensing system for floor interactions. In: Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, pp. 591–594. ACM, New York (2010)Google Scholar
  2. 2.
    Betke, M., Gips, J., Fleming, P.: The camera mouse: visual tracking of body features to provide computer access for people with severe disabilities. IEEE Transactions on Neural Systems and Rehabilitation Engineering 10(1), 1–10 (2002)CrossRefGoogle Scholar
  3. 3.
    Blake, J., Gurocak, H.: Haptic glove with mr brakes for virtual reality. IEEE/ASME Transactions on Mechatronics 14(5), 606–615 (2009)CrossRefGoogle Scholar
  4. 4.
    Headon, R., Curwen, R.: Recognizing movements from the ground reaction force. In: Proceedings of the 2001 Workshop on Perceptive User Interfaces, PUI 2001, pp. 1–8. ACM, New York (2001)Google Scholar
  5. 5.
    Hsu, J.M., Wu, W.J., Chang, I.R.: Ubiquitous multimedia information delivering service for smart home. In: International Conference on Multimedia and Ubiquitous Engineering, pp. 341–346, April 2007Google Scholar
  6. 6.
    Jung, J.W., Sato, T., Bien, Z.: Dynamic footprint-based person recognition method using a hidden markov model and a neural network. International Journal of Intelligent Systems 19(11), 1127–1141 (2004)CrossRefGoogle Scholar
  7. 7.
    Lai, K., Konrad, J., Ishwar, P.: A gesture-driven computer interface using kinect. In: IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 185–188, April 2012Google Scholar
  8. 8.
    Leusmann, P., Mollering, C., Klack, L., Kasugai, K., Ziefle, M., Rumpe, B.: Your floor knows where you are: sensing and acquisition of movement data. In: 12th IEEE International Conference on Mobile Data Management (MDM), vol. 2, pp. 61–66, June 2011Google Scholar
  9. 9.
    Lombardi, M., Pieracci, A., Santinelli, P., Vezzani, R., Cucchiara, R.: Human behavior understanding with wide area sensing floors. In: Salah, A.A., Hung, H., Aran, O., Gunes, H. (eds.) HBU 2013. LNCS, vol. 8212, pp. 112–123. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Middleton, L., Buss, A., Bazin, A., Nixon, M.: A floor sensor system for gait recognition. In: Fourth IEEE Workshop on Automatic Identification Advanced Technologies, pp. 171–176, October 2005Google Scholar
  11. 11.
    Murakita, T., Ikeda, T., Ishiguro, H.: Human tracking using floor sensors based on the markov chain monte carlo method. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 917–920 , August 2004Google Scholar
  12. 12.
    Paradiso, J., Abler, C., Hsiao, K., Reynolds, M.: The magic carpet: physical sensing for immersive environments. In: Extended Abstracts on Human Factors in Computing Systems, pp. 277–278 (1997)Google Scholar
  13. 13.
    Qian, G., Zhang, J., Kidane, A.: People identification using floor pressure sensing and analysis. IEEE Sensors Journal 10(9), 1447–1460 (2010)CrossRefGoogle Scholar
  14. 14.
    Rangarajan, K., Shah, M.: Establishing motion correspondence. CVGIP: Image Understanding 54(1), 56–73 (1991)CrossRefzbMATHGoogle Scholar
  15. 15.
    Rangarajan, S., Kidane, A., Qian, G., Rajko, S., Birchfield, D.: The design of a pressure sensing floor for movement-based human computer interaction. In: Kortuem, G., Finney, J., Lea, R., Sundramoorthy, V. (eds.) EuroSSC 2007. LNCS, vol. 4793, pp. 46–61. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  16. 16.
    Rimminen, H., Lindstrom, J., Linnavuo, M., Sepponen, R.: Detection of falls among the elderly by a floor sensor using the electric near field. IEEE Transactions on Information Technology in Biomedicine 14(6), 1475–1476 (2010)CrossRefGoogle Scholar
  17. 17.
    Smeulder, A., Chu, D., Cucchiara, R., Calderara, S., Deghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(7), 1442–1468 (2014)CrossRefGoogle Scholar
  18. 18.
    Srinivasan, P., Birchfield, D., Qian, G., Kidané, A.: A pressure sensing floor for interactive media applications. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACE 2005, pp. 278–281. ACM, New York (2005)Google Scholar
  19. 19.
    Valtonen, M., Maentausta, J., Vanhala, J.: Tiletrack: capacitive human tracking using floor tiles. In: IEEE International Conference on Pervasive Computing and Communications, pp. 1–10, March 2009Google Scholar
  20. 20.
    Vera-Rodriguez, R., Mason, J., Fierrez, J., Ortega-Garcia, J.: Comparative analysis and fusion of spatiotemporal information for footstep recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(4), 823–834 (2013)CrossRefGoogle Scholar
  21. 21.
    Winter, D.: Human balance and posture control during standing and walking. Gait & Posture 3(4), 193–214 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martino Lombardi
    • 1
  • Roberto Vezzani
    • 1
  • Rita Cucchiara
    • 1
  1. 1.Softech-ICTUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations