International Conference on Image Analysis and Processing

ICIAP 2015: Image Analysis and Processing — ICIAP 2015 pp 537-547 | Cite as

Robust and Fast Vessel Segmentation via Gaussian Derivatives in Orientation Scores

  • Jiong Zhang
  • Erik Bekkers
  • Samaneh Abbasi
  • Behdad Dashtbozorg
  • Bart ter Haar Romeny
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9279)

Abstract

We propose a robust and fully automatic matched filter-based method for retinal vessel segmentation. Different from conventional filters in 2D image domains, we construct a new matched filter based on second-order Gaussian derivatives in so-called orientation scores, functions on the coupled space of position and orientations \(\mathbb {R}^2 \rtimes S^1\). We lift 2D images to 3D orientation scores by means of a wavelet-type transform using an anisotropic wavelet. In the domain \(\mathbb {R}^2 \rtimes S^1\), we set up rotation and translation invariant second-order Gaussian derivatives. By locally matching the multi-scale second order Gaussian derivative filters with data in orientation scores, we are able to enhance vessel-like structures located in different orientation planes accordingly. Both crossings and tiny vessels are well-preserved due to the proposed multi-scale and multi-orientation filtering method. The proposed method is validated on public databases DRIVE and STARE, and we show that the method is both fast and reliable. With respectively a sensitivity and specificity of 0.7744 and 0.9708 on DRIVE, and 0.7940 and 0.9707 on STARE, our method gives improved performance compared to state-of-the-art algorithms.

Keywords

Retinal vessel segmentation Matched filter Gaussian derivatives Orientation scores Crossing preservation Micro-vasculature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ikram, M.K., Ong, Y.T., Cheung, C.Y., Wong, T.Y.: Retinal vascular caliber measurements: clinical significance, current knowledge and future perspectives. Ophthalmologica 229(3), 125–136 (2013)CrossRefGoogle Scholar
  2. 2.
    Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag. 25(9), 1214–1222 (2006)CrossRefGoogle Scholar
  3. 3.
    Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imag. 30, 146–158 (2011)CrossRefGoogle Scholar
  4. 4.
    Bekkers, E.J., Duits, R., Berendschot, T., ter Haar Romeny, B.: A multi-orientation analysis approach to retinal vessel tracking. Journal of Mathematical Imaging and Vision, pp. 1–28 (2014)Google Scholar
  5. 5.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag. 19(3), 203–211 (2000)CrossRefGoogle Scholar
  6. 6.
    Al-Rawi, M., Qutaishat, M., Arrar, M.: An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37, 262–267 (2007)CrossRefGoogle Scholar
  7. 7.
    Li, Q., You, J., Zhang, D.: Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Systems with Applications 39(9), 7600–7610 (2012)CrossRefGoogle Scholar
  8. 8.
    Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Biomed. Eng. 29(9), 125–1497 (2009)Google Scholar
  9. 9.
    Krause, M., Alles, R., Burgeth, B., Weickert, J.: Fast retinal vessel analysis. J. Real-Time Image Process, 1–10 (2013). doi: 10.1007/s11554-013-0342-5
  10. 10.
    Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers in Biology and Medicine 40, 438–445 (2010)CrossRefGoogle Scholar
  11. 11.
    Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19, 46–57 (2015)CrossRefGoogle Scholar
  12. 12.
    Chauduri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood-vessels in retinal images using two-dimensional matched-filters. IEEE Trans. Med. Imag. 8, 263–269 (1989)CrossRefGoogle Scholar
  13. 13.
    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag. 25, 1200–1213 (2006)CrossRefGoogle Scholar
  14. 14.
    Zhang, J., Duits, R., Sanguinetti, G., ter Haar Romeny, B.M.: Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging. Accepted by Numerical Mathematics: Theory, Methods and Applications (NM-TMA) 40, 1–49 (2015). Preprint. arxiv.org/abs/1403.3320CrossRefGoogle Scholar
  15. 15.
    Duits, R., Felsberg, M., Granlund, G., ter Haar Romeny., B.M.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group. International Journal of Computer Vision 79(1), 79–102 (2007)CrossRefGoogle Scholar
  16. 16.
    Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat’s striate cortex. The Journal of Physiology 148, 574–591 (1959)CrossRefGoogle Scholar
  17. 17.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  18. 18.
    Lindeberg, T.: Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics 21(2), 224–270 (1994)Google Scholar
  19. 19.
    Foracchia, M., Grisan, E., Ruggeri, A.: Luminosity and contrast normalization in retinal images. Med. Image Anal. 9(3), 179–190 (2005)CrossRefGoogle Scholar
  20. 20.
    Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jiong Zhang
    • 1
  • Erik Bekkers
    • 1
  • Samaneh Abbasi
    • 1
  • Behdad Dashtbozorg
    • 1
  • Bart ter Haar Romeny
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department of Biomedical and Information EngineeringNortheastern UniversityShenyangChina

Personalised recommendations