Where Is the Ground? Quality Measures for the Planar Digital Terrain Model in Terrestrial Laser Scanning

  • Marcin Bator
  • Leszek J. Chmielewski
  • Arkadiusz Orłowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9279)


In the analysis of terrestrial laser scanning (TLS) data the digital terrain model (DTM) is one of important elements. To evaluate the DTM or to find the DTM by way of optimization it is necessary to formulate the measure of DTM quality. Three parameterized measures are proposed and tested against a comparative model for a series of TLS data. The measure equal to the number of points inside a layer of specified height above the plane appeared to produce the most distinct maximum for an optimal model. The measures have been applied to the planar DTM but their use for other models is possible.


Digital terrain model DTM Ground level Planar LIDAR TLS Quality measure Robust Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sithole, G., Vosselman, G.: Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. of Photogrammetry and Remote Sensing 59(1–2), 85–101 (2004). doi: 10.1016/j.isprsjprs.2004.05.004 CrossRefGoogle Scholar
  2. 2.
    Stereńczak, K., Zasada, M., Brach, M.: The accuracy assessment of DTM generated from LIDAR data for forest area - a case study for scots pine stands in Poland. Baltic Forestry 19(2), 252–262 (2013)Google Scholar
  3. 3.
    Srinivasan, S., Popescu, S., Eriksson, M., Sheridan, R., Ku, N.W.: Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sensing 7(2), 1877–1896 (2015). doi: 10.3390/rs70201877 CrossRefGoogle Scholar
  4. 4.
    Puttonen, E., Krooks, A., Kaartinen, H., Kaasalainen, S.: Ground level determination in forested environment with utilization of a scanner-centered terrestrial laser scanning configuration. IEEE Geoscience and Remote Sensing Letters 12(3), 616–620 (2015). doi: 10.1109/LGRS.2014.2353414 CrossRefGoogle Scholar
  5. 5.
    Zasada, M., Stereńczak, K., Dudek, W., Rybski, A.: Horizon visibility and accuracy of stocking determination on circular sample plots using automated remote measurement techniques. Forest Ecology and Management 302, 171–177 (2013). doi: 10.1016/j.foreco.2013.03.041 CrossRefGoogle Scholar
  6. 6.
    Stereńczak, K., Kozak, J.: Evaluation of digital terrain models generated in forest conditions from airborne laser scanning data acquired in two seasons. Scandinavian Journal of Forest Research 26(4), 374–384 (2011). doi: 10.1080/02827581.2011.570781 CrossRefGoogle Scholar
  7. 7.
    Chmielewski, L., Orłowski, A.: Ground level recovery from terrestrial laser scanning data with the variably randomized iterated hierarchical hough transform. In: Computer Analysis of Images and Patterns: Proc. Int. Conf, CAIP 2015. Lecture Notes in Computer Science. Springer (2015) (accepted for print)Google Scholar
  8. 8.
    Kozera, R., Noakes, L.: C 1 interpolation with cumulative chord cubics. Fundamenta Informaticae 61(3–4), 285–301 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gorte, B.: Tree separation and classification contest (within the IQumulus project), April 30, 2015. (Online; accessed 19-May-2015)
  10. 10.
    Chmielewski, L.J., Bator, M., Olejniczak, M.: Advantages of using object-specific knowledge at an early processing stage in the detection of trees in LIDAR data. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 145–154. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Chmielewski, L.J., Bator, M.: Hough transform for opaque circles measured from outside and fuzzy voting for and against. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 313–320. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Chmielewski, L.J., Bator, M., Zasada, M., Stereńczak, K., Strzeliński, P.: Fuzzy hough transform-based methods for extraction and measurements of single trees in large-volume 3D terrestrial LIDAR data. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 265–274. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  13. 13.
    Huber, P.: Robust Statistics. John Wiley, New York (2003) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marcin Bator
    • 1
  • Leszek J. Chmielewski
    • 1
  • Arkadiusz Orłowski
    • 1
  1. 1.Faculty of Applied Informatics and Mathematics (WZIM)Warsaw University of Life Sciences (SGGW), PolandWarsawPoland

Personalised recommendations