MEG: Multi-Expert Gender Classification from Face Images in a Demographics-Balanced Dataset

  • Modesto Castrillón-Santana
  • Maria De Marsico
  • Michele Nappi
  • Daniel Riccio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9279)


In this paper we focus on gender classification from face images, which is still a challenging task in unrestricted scenarios. This task can be useful in a number of ways, e.g., as a preliminary step in biometric identity recognition supported by demographic information. We compare a feature based approach with two score based ones. In the former, we stack a number of feature vectors obtained by different operators, and train a SVM based on them. In the latter, we separately compute the individual scores from the same operators, then either we feed them to a SVM, or exploit likelihood ratio based on a pairwise comparison of their answers. Experiments use EGA database, which presents a good balance with respect to demographic features of stored face images. As expected, feature level fusion achieves an often better classification performance but it is also quite computationally expensive. Our contribution has a threefold value: 1) the proposed score level fusion approaches, though less demanding, achieve results which are rather similar or slightly better than feature level fusion, especially when a particular set of experts are fused; since experts are trained individually, it is not required to evaluate a complex multi-feature distribution and the training process is more efficient; 2) the number of uncertain cases significantly decreases; 3) the operators used are not computationally expensive in themselves.


Support Vector Machine Face Recognition Face Image Local Binary Pattern Level Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klare, B.E., Burge, M.J., Klontz, J.C., Jain, A.K., Jain, A.K.: Face recognition performance: Role of demographic information. IEEE Trans. on Information Forensics and Security 7(6), 1789–1801 (2012)CrossRefGoogle Scholar
  2. 2.
    Bekios-Calfa, J., Buenaposada, J.M., Baumela, L.: Robust gender recognition by exploiting facial attributes dependencies. Pattern Recognition Letters 36, 228–234 (2014)CrossRefGoogle Scholar
  3. 3.
    Ng, C.B., Tay, Y.H., Goi, B.-M.: Recognizing human gender in computer vision: a survey. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 335–346. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: Computer Vision and Pattern Recognition (2011)Google Scholar
  5. 5.
    Riccio, D., Tortora, G., De Marsico, M., Wechsler, H.: EGA - ethnicity, gender and age, a pre-annotated face database. In: 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS), pp. 1–8 (2012)Google Scholar
  6. 6.
    Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns. Springer (2011)Google Scholar
  7. 7.
    Jun, B., Kim, D.: Robust face detection using local gradient patterns and evidence accumulation. Pattern Recognition 45(9), 3304–3316 (2012)CrossRefGoogle Scholar
  8. 8.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  9. 9.
    Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Trans. on Image Processing 19(2), 533–544 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: Wld: A robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1705–1720 (2010)CrossRefGoogle Scholar
  11. 11.
    Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  12. 12.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), December 2006Google Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Ulery, B., Hicklin, A.R., Watson, C., Fellner, W., Hallinan, P.: Studies of biometric fusion. Technical Report IR 7346, NIST (2006)Google Scholar
  15. 15.
  16. 16.
  17. 17.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET Database and Evaluation Procedure for Face-Recognition Algorithms. J. Image and Vision Computing 16(5), 295–306 (1988)CrossRefGoogle Scholar
  18. 18.
    Phillips, P., Flynn, P., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2005)Google Scholar
  19. 19.
    Lyons, M.J., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with gabor wavelets. In: Proceeding of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205 (1998)Google Scholar
  20. 20.
    Jain, V., Mukherjee, A.: The Indian Face Database.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Modesto Castrillón-Santana
    • 1
  • Maria De Marsico
    • 2
  • Michele Nappi
    • 3
  • Daniel Riccio
    • 4
  1. 1.Universidad de Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Sapienza University of RomeRomeItaly
  3. 3.University of SalernoFiscianoItaly
  4. 4.University of Naples Federico IINaplesItaly

Personalised recommendations