Advertisement

Global and Local Gaussian Process for Multioutput and Treed Data

  • Jhouben J. Cuesta
  • Mauricio A. Álvarez
  • Álvaro Á. Orozco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9279)

Abstract

We propose a novel Multi-Level Multiple Output Gaussian Process framework for dealing with multivariate and treed data.We define a two-layer hierarchical tree with parent nodes on the upper layer and children nodes on the lower layer in order to represent the interaction between the multiple outputs.Then we compute the Multiple Output Gaussian Process (MGP) covariance matrix as a linear combination of a global multiple output covariance matrix (using the total number of outputs) and a set of local matrices (only using the outputs belonging to each parent node). With this construction of the covariance matrix and the tree we are capable to do interpolation using the MGP framework. To improve the results, we also test different ways of computing the Intrinsic Model of Coregionalization covariance matrix that uses the input space. Results over synthetic data, Motion Capture data and Wireless data shows that the proposed methodology makes a better representation of treed multiple output data.

Keywords

Covariance Matrix Covariance Function Gaussian Process Kernel Matrix Gaussian Process Regression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Álvarez, M.A.: Convolved Gaussian Process Priors for Multivariate Regression With Applications to Dynamical Systems. Ph.D. thesis, School of Computer Science, University of Manchester (2011)Google Scholar
  2. 2.
    Álvarez, M.A., Lawrence, N.D.: Computationally efficient convolved multiple output Gaussian processes. Journal of Machine Learning Research 12, 39 (2011)Google Scholar
  3. 3.
    Álvarez, M.A., Rosasco, L., Lawrence, N.: Kernels for Vector-Valued Functions: A Review. Now Publishers Incorporated (2012). http://books.google.com.co/books?id=2A5hLwEACAAJ
  4. 4.
    Álvarez, M.A., Lawrence, N.D.: Sparse convolved multiple output gaussian processes for multi-outptut regression. In: NIPS 2008, pp. 57–64 (2009)Google Scholar
  5. 5.
    Bilionis, I., Zabaras, N.: Multi-output local gaussian process regression: Applications to uncertainty quantification. J. Comput. Physics 231(17), 5718–5746 (2012). http://dblp.uni-trier.de/db/journals/jcphy/jcphy231.html#BilionisZ12 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer (2007). http://www.openisbn.com/isbn/9780387310732/
  7. 7.
    Carl Edwards Rasmussen, C.W.: Gaussian Processes for Machine Learning. The MIT Press (2006)Google Scholar
  8. 8.
    Fox, E.B., Dunson, D.B.: Multiresolution gaussian processes. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) NIPS, pp. 746–754 (2012). http://dblp.uni-trier.de/db/conf/nips/nips2012.html#FoxD12
  9. 9.
    Gramacy, R.B., Lee, H.K.H.: Bayesian treed gaussian process models with an application to computer modeling. Journal of the American Statistical Association (2007)Google Scholar
  10. 10.
    Konomi, B., Karagiannis, G., Sarkar, A., Sun, X., Lin, G.: Bayesian treed multivariate gaussian process with adaptive design: Application to a carbon capture unit. Technometrics, 145–158, May 2014Google Scholar
  11. 11.
    Lawrence, N.D., Moore, A.J.: Hierarchical gaussian process latent variable models. In: Proceedings of the 24th International Conference on Machine Learning, pp. 481–488 (2007)Google Scholar
  12. 12.
    Liutkus, G., Badeau, R.: Multi-dimensional signal separation with gaussian processes. In: IEEE Statistical Signal Processing Workshop (SSP), pp. 401–404 (2011)Google Scholar
  13. 13.
    Murphy, K.P.: Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning Series). The MIT Press (2012). http://www.openisbn.com/isbn/9780262018029/
  14. 14.
    Park, S., Choi, S.: Hierarchical gaussian process regression. In: JMLR: Workshop and Conference Proceedings 13, pp. 95–110 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jhouben J. Cuesta
    • 1
  • Mauricio A. Álvarez
    • 1
  • Álvaro Á. Orozco
    • 1
  1. 1.Faculty of EngineeringUniversidad Tecnológica de PereiraPereiraColombia

Personalised recommendations