International Conference on Image Analysis and Processing

ICIAP 2015: New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops pp 71-78 | Cite as

On Comparing Colour Spaces From a Performance Perspective: Application to Automated Classification of Polished Natural Stones

  • Francesco Bianconi
  • Raquel Bello
  • Antonio Fernández
  • Elena González
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

In this paper we investigate the problem of choosing the adequate colour representation for automated surface grading. Specifically, we discuss the pros and cons of different colour spaces, point out some common misconceptions about their use, and propose a number of ‘best practices’ for colour conversion. To put the discussion into practice we generated a new dataset of 25 classes of natural stone products which we used to systematically compare and evaluate the performance of seven device-dependent and three device-independent colour spaces through two classification strategies. With the nearest neighbour classifiers no significant difference emerged among the colour spaces considered, whereas with the linear classifier it was found that device-independent Lab and Luv spaces performed significantly better than the others.

Keywords

Soft colour descriptors Colour spaces Visual appearance Natural stones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adel, M., Wolf, D., Vogrig, R., Husson, R.: Evaluation of colour spaces in computer vision. In: Proc. of the International Conference on Systems, Man and Cybernetics, vol. 2, pp. 499–504. Le Touquet, France, October 1993Google Scholar
  2. 2.
    Bianco, S., Gasparini, F., Russo, A., Schettini, R.: A new method for RGB to XYZ transformation based on pattern search optimization. IEEE Transactions on Consumer Electronics 53(3), 1020–1028 (2007)CrossRefGoogle Scholar
  3. 3.
    Bianconi, F., Saetta, S.A., Sacchi, G., Asdrubali, F., Baldinelli, G.: Colour calibration of an artificial vision system for industrial applications: comparison of different polynomial models. In: Rossi, M. (ed.) Colour and Colorimetry Multidisciplinary Contributions. Optics and Photonics Series Notebooks, no. 21, pp. 18–25. Maggioli Editore (2011)Google Scholar
  4. 4.
    Bianconi, F., González, E., Fernández, A., Saetta, S.A.: Automatic classification of granite tiles through colour and texture features. Expert Systems with Applications 39(12), 11212–11218 (2012)CrossRefGoogle Scholar
  5. 5.
    Bianconi, F., González, E., Fernández, A., Saetta, S.A.: Apparato per acquisire una pluralità di immagini di almeno un corpo e relativo metodo (Apparatus to acquire a plurality of superficial images of at least one body and related method), 2015. IT patent no. 0001413266. Filed on July 25, 2012; granted on January 16, 2015Google Scholar
  6. 6.
    Bianconi, F., Fernández, A., González, E., Saetta, S.A.: Performance analysis of colour descriptors for parquet sorting. Expert Systems with Applications 40(5), 1636–1644 (2013)CrossRefGoogle Scholar
  7. 7.
    Drimbarean, A., Whelan, P.F.: Experiments in colour texture analysis. Pattern Recognition Letters 22(10), 1161–1167 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Kang, H.R.: Computational Color Technology. Spie Press (2006)Google Scholar
  9. 9.
    Kylberg, G., Sintorn, I.-M.: Evaluation of noise robustness for local binary pattern descriptors in texture classification. EURASIP Journal on Image and Video Processing 2013(17) (2013)Google Scholar
  10. 10.
    López, F., Valiente, J.M., Prats, J.M., Ferrer, A.: Performance evaluation of soft color texture descriptors for surface grading using experimental design and logistic regression. Pattern Recognition 41(5), 1744–1755 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Marmi, M.: A collection of images of polished natural stones for colour and texture analysis. version 2.0 (2015). http://dismac.dii.unipg.it/mm. (last accessed on May 7, 2015)
  12. 12.
    Montani, C.: XXV World Marble and Stone Report. Aldus Casa di Edizioni, Carrara (2014)Google Scholar
  13. 13.
    Ohta, Y., Kanade, T., Sakai, T.: Color information for region segmentation. Computer Graphics and Image Processing 13(3), 222–241 (1980)CrossRefGoogle Scholar
  14. 14.
    Palus, H.: Representations of colour images in different colour spaces. In: Sangwine, S.J., Horne, R.E.N. (eds.) The Colour Image Processing Handbook, pp. 67–90. Springer (1998)Google Scholar
  15. 15.
    Paschos, G.: Perceptually uniform color spaces for color texture analysis: An empirical evaluation. IEEE transactions on Image Processing 10(6), 932–937 (2001)CrossRefMATHGoogle Scholar
  16. 16.
    Petrou, M., Petrou, C.: Image Processing: The Fundamentals. John Wiley & Sons Ltd (2010)Google Scholar
  17. 17.
    Qazi, I.U.H., Alata, O., Burie, J.C., Moussa, A., Fernández Maloigne, C.: Choice of a pertinent color space for color texture characterization using parametric spectral analysis. Pattern Recognition 44(1), 16–31 (2011)CrossRefMATHGoogle Scholar
  18. 18.
    Rajadell, O., García-Sevilla, P.: Influence of color spaces over texture characterization. In: Medina Barrera, M.G., Ramírez Cruz, J.F., Sossa Azuela, J.H. (eds.) Advances in Intelligent and Information Technologies. Research in Computing Science, vol. 38, pp. 273–281. Instituto Politécnico Nacional, Centro de Investigación en Computación, México (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Francesco Bianconi
    • 1
  • Raquel Bello
    • 2
  • Antonio Fernández
    • 2
  • Elena González
    • 2
  1. 1.Department of EngineeringUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.School of Industrial EngineeringUniversidade de VigoVigoSpain

Personalised recommendations