Advertisement

Simple Median-Based Method for Stationary Background Generation Using Background Subtraction Algorithms

  • Benjamin LaugraudEmail author
  • Sébastien Piérard
  • Marc Braham
  • Marc Van Droogenbroeck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

The estimation of the background image from a video sequence is necessary in some applications. Computing the median for each pixel over time is effective, but it fails when the background is visible for less than half of the time. In this paper, we propose a new method leveraging the segmentation performed by a background subtraction algorithm, which reduces the set of color candidates, for each pixel, before the median is applied. Our method is simple and fully generic as any background subtraction algorithm can be used. While recent background subtraction algorithms are excellent in detecting moving objects, our experiments show that the frame difference algorithm is a technique that compare advantageously to more advanced ones. Finally, we present the background images obtained on the SBI dataset, which appear to be almost perfect. The source code of our method can be downloaded at http://www.ulg.ac.be/telecom/research/sbg.

Keywords

Video Sequence Buffer Size Background Image Error Pixel Background Subtraction Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amri, S., Barhoumi, W., Zagrouba, E.: Unsupervised background reconstruction based on iterative median blending and spatial segmentation. In: IEEE Int. Conf. Imag. Syst. and Techniques (IST), pp. 411–416. Thessaloniki, Greece, July 2010. http://dx.doi.org/10.1109/IST.2010.5548468
  2. 2.
    Barnich, O., Van Droogenbroeck, M.: ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011). http://dx.doi.org/10.1109/TIP.2010.2101613 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: An overview. Computer Science Review 11–12, 31–66 (2014). http://dx.doi.org/10.1016/j.cosrev.2014.04.001 CrossRefGoogle Scholar
  4. 4.
    Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  5. 5.
    Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: The pixel-based adaptive segmenter. In: IEEE Int. Conf. Comput. Vision and Pattern Recognition Workshop (CVPRW). Providence, Rhode Island, USA, June 2012Google Scholar
  6. 6.
    Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Maddalena, L., Petrosino, A.: Background model initialization for static cameras. In: Background Modeling and Foreground Detection for Video Surveillance, chap. 3. Chapman and Hall/CRC (2014)Google Scholar
  8. 8.
    Maddalena, L., Petrosino, A.: Towards benchmarking scene background initialization. CoRR abs/1506.04051 (2015). http://arxiv.org/abs/1506.04051
  9. 9.
    Manzanera, A., Richefeu, J.: A robust and computationally efficient motion detection algorithm based on sigma-delta background estimation. In: Indian Conference on Computer Vision, Graphics and Image Processing, pp. 46–51. Kolkata, India, December 2004Google Scholar
  10. 10.
    Patwardhan, K., Sapiro, G., Bertalmio, M.: Video inpainting of occluding and occluded objects. IEEE Int. Conf. Image Process. (ICIP) 2, 69–72 (2005)Google Scholar
  11. 11.
    Sobral, A.: BGSLibrary: An OpenCV C++ background subtraction library. In: Workshop de Visao Computacional (WVC). Rio de Janeiro, Brazil, June 2013Google Scholar
  12. 12.
    St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: SuBSENSE: A universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2015). http://dx.doi.org/10.1109/TIP.2014.2378053 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Stauffer, C., Grimson, E.: Adaptive background mixture models for real-time tracking. In: IEEE Int. Conf. Comput. Vision and Pattern Recognition (CVPR), vol. 2, pp. 246–252. Ft. Collins, USA, June 1999Google Scholar
  14. 14.
    Van Droogenbroeck, M., Barnich, O.: Visual background extractor. World Intellectual Property Organization, WO 2009/007198, 36 pages, January 2009Google Scholar
  15. 15.
    Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)CrossRefGoogle Scholar
  16. 16.
    Zivkovic, Z.: Improved adaptive gausian mixture model for background subtraction. In: IEEE Int. Conf. Pattern Recognition (ICPR), vol. 2, pp. 28–31. Cambridge, UK, August 2004Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Benjamin Laugraud
    • 1
    Email author
  • Sébastien Piérard
    • 1
  • Marc Braham
    • 1
  • Marc Van Droogenbroeck
    • 1
  1. 1.INTELSIG LaboratoryUniversity of LiègeLiègeBelgium

Personalised recommendations