Advertisement

Food Recognition and Leftover Estimation for Daily Diet Monitoring

  • Gianluigi Ciocca
  • Paolo Napoletano
  • Raimondo Schettini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

Here we propose a system for automatic dietary monitoring of canteen customers based on robust computer vision techniques. The proposed system recognizes foods and estimates food leftovers. Results achieved on 1000 customers of a real canteen are promising.

Keywords

Food recognition Leftover estimation Diet monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, Z., Khanna, N., Kerr, D.A., Boushey, C.J., Delp, E.J.: A mobile phone user interface for image-based dietary assessment. In: IS&T/SPIE Electronic Imaging, p. 903007. International Society for Optics and Photonics (2014)Google Scholar
  2. 2.
    Anthimopoulos, M.M., Gianola, L., Scarnato, L., Diem, P., Mougiakakou, S.G.: A food recognition system for diabetic patients based on an optimized bag-of-features model. IEEE Journal of Biomedical and Health Informatics 18(4), 1261–1271 (2014)CrossRefGoogle Scholar
  3. 3.
    Beijbom, O., Joshi, N., Morris, D., Saponas, S., Khullar, S.: Menu-match: restaurant-specific food logging from images. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 844–851. IEEE (2015)Google Scholar
  4. 4.
    Bettadapura, V., Thomaz, E., Parnami, A., Abowd, G., Essa, I.: Leveraging context to support automated food recognition in restaurants. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 580–587 (2015)Google Scholar
  5. 5.
    Bianconi, F., Harvey, R., Southam, P., Fernández, A.: Theoretical and experimental comparison of different approaches for color texture classification. Journal of Electronic Imaging 20(4) (2011)Google Scholar
  6. 6.
    Chae, J., Woo, I., Kim, S., Maciejewski, R., Zhu, F., Delp, E.J., Boushey, C.J., Ebert, D.S.: Volume estimation using food specific shape templates in mobile image-based dietary assessment. In: IS&T/SPIE Electronic Imaging, p. 78730. International Society for Optics and Photonics (2011)Google Scholar
  7. 7.
    Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Ciocca, G., Napoletano, P., Schettini, R.: Iat-image annotation tool: Manual. arXiv preprint arXiv:1502.05212 (2015)
  9. 9.
    Cusano, C., Napoletano, P., Schettini, R.: Intensity and color descriptors for texture classification. In: IS&T/SPIE Electronic Imaging, p. 866113. International Society for Optics and Photonics (2013)Google Scholar
  10. 10.
    Cusano, C., Napoletano, P., Schettini, R.: Combining local binary patterns and local color contrast for texture classification under varying illumination. JOSA A 31(7), 1453–1461 (2014)CrossRefGoogle Scholar
  11. 11.
    Farinella, G., Moltisanti, M., Battiato, S.: Classifying food images represented as bag of textons. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 5212–5216 (2014)Google Scholar
  12. 12.
    He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications. John Wiley & Sons (2013)Google Scholar
  13. 13.
    He, Y., Xu, C., Khanna, N., Boushey, C., Delp, E.: Food image analysis: segmentation, identification and weight estimation. In: 2013 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2013)Google Scholar
  14. 14.
    He, Y., Xu, C., Khanna, N., Boushey, C., Delp, E.: Analysis of food images: features and classification. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2744–2748 (2014)Google Scholar
  15. 15.
    Kagaya, H., Aizawa, K., Ogawa, M.: Food detection and recognition using convolutional neural network. In: Proceedings of the ACM International Conference on Multimedia, MM 2014, pp. 1085–1088 (2014)Google Scholar
  16. 16.
    Kawano, Y., Yanai, K.: Food image recognition with deep convolutional features. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2014 Adjunct, pp. 589–593 (2014)Google Scholar
  17. 17.
    Kawano, Y., Yanai, K.: Foodcam-256: a large-scale real-time mobile food recognitionsystem employing high-dimensional features and compression of classifier weights. In: Proceedings of the ACM International Conference on Multimedia, MM 2014, pp. 761–762 (2014)Google Scholar
  18. 18.
    Kawano, Y., Yanai, K.: Foodcam: A real-time food recognition system on a smartphone. Multimedia Tools and Applications, 1–25 (2014)Google Scholar
  19. 19.
    Kitamura, K., Yamasaki, T., Aizawa, K.: Foodlog: capture, analysis and retrieval of personal food images via web. In: Proceedings of the ACM Multimedia 2009 Workshop on Multimedia for Cooking and Eating Activities, pp. 23–30 (2009)Google Scholar
  20. 20.
    Kong, F., Tan, J.: Dietcam: Automatic dietary assessment with mobile camera phones. Pervasive and Mobile Computing 8(1), 147–163 (2012)CrossRefGoogle Scholar
  21. 21.
    Mariappan, A., Bosch, M., Zhu, F., Boushey, C.J., Kerr, D.A., Ebert, D.S., Delp, E.J.: Personal dietary assessment using mobile devices, vol. 7246, pp. 72460Z-1–72460Z-12 (2009)Google Scholar
  22. 22.
    Nguyen, D.T., Zong, Z., Ogunbona, P.O., Probst, Y., Li, W.: Food image classification using local appearance and global structural information. Neurocomputing 140, 242–251 (2014)CrossRefGoogle Scholar
  23. 23.
    Pouladzadeh, P., Shirmohammadi, S., Al-Maghrabi, R.: Measuring calorie and nutrition from food image. IEEE Transactions on Instrumentation and Measurement 63(8), 1947–1956 (2014)CrossRefGoogle Scholar
  24. 24.
    Pouladzadeh, P., Villalobos, G., Almaghrabi, R., Shirmohammadi, S.: A novel svm based food recognition method for calorie measurement applications. In: 2012 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 495–498 (2012)Google Scholar
  25. 25.
    Puri, M., Zhu, Z., Yu, Q., Divakaran, A., Sawhney, H.: Recognition and volume estimation of food intake using a mobile device. In: 2009 Workshop on Applications of Computer Vision (WACV), pp. 1–8 (2009)Google Scholar
  26. 26.
    Sun, M., Liu, Q., Schmidt, K., Yang, J., Yao, N., Fernstrom, J., Fernstrom, M., DeLany, J.P., Sclabassi, R.: Determination of food portion size by image processing. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 871–874 (2008)Google Scholar
  27. 27.
    Villalobos, G., Almaghrabi, R., Pouladzadeh, P., Shirmohammadi, S.: An image processing approach for calorie intake measurement. In: 2012 IEEE International Symposium on Medical Measurements and Applications Proceedings, pp. 1–5 (2012)Google Scholar
  28. 28.
    Zhu, F., Bosch, M., Woo, I., Kim, S., Boushey, C., Ebert, D., Delp, E.: The use of mobile devices in aiding dietary assessment and evaluation. IEEE Journal of Selected Topics in Signal Processing 4(4), 756–766 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gianluigi Ciocca
    • 1
  • Paolo Napoletano
    • 1
  • Raimondo Schettini
    • 1
  1. 1.DISCo (Dipartimento di Informatica, Sistemistica e Comunicazione)Università degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations