Advertisement

A New Context-Aware Computing Method for Urban Safety

  • Hyeon-Woo Kang
  • Hang-Bong KangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

Recently, various research efforts have been made to analyze urban environments. Particularly, predicting urban safety from by means of visual perception is very important for most people. In this paper, we propose a context-aware urban safety prediction method by measuring the contexts of urban environments through visual information. In our context-aware evaluation, we define and extract positive and negative visual associations with urban safety. Then, we add these associations to a computational model of urban safety. Our experimental results show better performance than previous approaches.

Keywords

Urban safety Context Visual perception Context-aware computing 

References

  1. 1.
    Lynch, K.: The image of the city, vol. 1. MIT press (1960)Google Scholar
  2. 2.
    Salesses, P., Schechtner, K., Hidalgo, C.A.: The collaborative image of the city: mapping the inequality of urban perception. PloS one 8(7) (2013)Google Scholar
  3. 3.
    Naik, N., Philipoom, J., Raskar, R., Hidalgo, C.: Streetscore-predicting the perceived safety of one million streetscapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 793–799 (2014)Google Scholar
  4. 4.
    Ordonez, V., Berg, T.L.: Learning high-level judgments of urban perception. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 494–510. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Arietta, S., Efros, A., Ramamoorthi, R., Agrawala, M.: City forensics: Using visual elements to predict non-visual city attributes. IEEE Transactions on Visualization and Computer Graphics 20, 2624–2633 (2014)CrossRefGoogle Scholar
  6. 6.
    Khosla, A., An, B., Lim, J.J., Torralba, A.: Looking beyond the visible scene. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  7. 7.
    Wilson, J.Q., Kelling, G.L.: Broken windows. Atlantic monthly 249(3), 29–38 (1982)Google Scholar
  8. 8.
    Keizer, K., Lindenberg, S., Steg, L.: The spreading of disorder. Science 322(5908), 1681–1685 (2008)CrossRefGoogle Scholar
  9. 9.
    Marchesotti, L., Perronnin, F., Larlus, D., Csurka, G.: Assessing the aesthetic quality of photographs using generic image descriptors. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1784–1791 (2011)Google Scholar
  10. 10.
    Isola, P., Xiao, J., Parikh, D., Torralba, A., Oliva, A.: What makes a photograph memorable? In: 2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 145–152 (2014)Google Scholar
  11. 11.
    Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing 6(2), 161–180 (2010)CrossRefGoogle Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. IEEE Computer Vision and Pattern Recognition 1, 886–893 (2005)Google Scholar
  13. 13.
    Vondrick, C., Khosla, A., Malisiewicz, T., Torralba, A.: HOGgles: visualizing object detection features. In: ICCV 2013, pp. 1–8 (2013)Google Scholar
  14. 14.
    Stefano, L.D., Mattoccia, S., Tombari, F.: An efficient algorithm for exhausrive template matching based on normalized cross correlation. In: Image Analysis and Recognition, pp. 322–327 (2004)Google Scholar
  15. 15.
    Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3) (2011)Google Scholar
  16. 16.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiely (2000)Google Scholar
  17. 17.
    Laffont, P.Y., Ren, Z., Tao, X., Qian, C., Hays J.: Transient Attributes for High-Level Understanding and Editing of Outdoor Scenes. ACM Transactions on Graphics – Proceedings of ACM SIGGRAPH 2014 33(4) (2014)Google Scholar
  18. 18.
    Lu, C., Lin, D., Jia, J., Tang, C.: Two-class weather classification. In: CVPR (2014)Google Scholar
  19. 19.
    Roser, M., Moosmann, F.: Classification of weather situations on single color images, intelligent vehicles symposium, pp. 798–803 (2008)Google Scholar
  20. 20.
    Felzenszwalb, P., McAllester, D., Fowlkes, C.: Discriminatively and trained, multiscale, deformable part model. In: CVPR (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Digital MediaCatholic University of KoreaBucheonKorea

Personalised recommendations