Computer Aided Evaluation (CAE) of Morphologic Changes in Pigmented Skin Lesions

  • Maria RizziEmail author
  • Matteo D’Aloia
  • Gianpaolo Cice
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)


Mole pattern changes are important elements in detecting cancerous skin lesions, the early stage detection is a key factor to completely cure the pathology. In this paper, an automatic system for mole-tracking is indicated. The method presented is been realized as a mobile app and can be used to perform periodically a careful self-examination of their pigmented skin lesions. The implemented method receives in input two segmented images of the same pigmented skin lesion corresponding to the actual image and to the image before the last period under test. The method performs image matching and changes evaluation adopting a three stage artificial neural network and provides as output a risk indicator related to the morphology changes of the skin lesion.


Smart health Healthcare Neural network Skin lesion Computer aided detection Computer aided evaluation Border detection Edge detection CAD CAE 


  1. 1.
    Solanas, A., Patsakis, C., Conti, M., Ioannis, S.V., Ramos, V., Falcone, F., Postolache, O., Pérez-Martínez, P.A., Di Pietro, R., Perrea, D.N., Martínez-Ballestéc, A.: Smart Health: A Context-Aware Health Paradigm within Smart Cities. IEEE Commun. Mag. 52, 74–81 (2014)CrossRefGoogle Scholar
  2. 2.
    Rizzi, M., D’Aloia, M., Castagnolo, B.: Review: Health Care CAD Systems for Breast Microcalcification Cluster Detection. J. Med. Biol. Eng. 32, 147–156 (2012)CrossRefGoogle Scholar
  3. 3.
    Rizzi, M., Maurantonio, M., Castagnolo, B.: A Wireless Sensor Network for Security Systems Adopting the Bluetooth Technology. WSEAS Transaction on Circuits and Systems 5, 652–657 (2006)Google Scholar
  4. 4.
    Rizzi, M., D’Aloia, M., Castagnolo, B.: High Sensitivity and Noise Immune Method to Detect Impedance Cardiography Characteristic Points Using Wavelet Transform. J. of Appl. Sci. 9, 1412–1421 (2009)CrossRefGoogle Scholar
  5. 5.
    Rizzi, M., D’Aloia, M., Castagnolo, B.: A New method for ICG characteristic point detection. In: 1th Int. Conf. on Bio-inspired Syst. and Signal Process., pp. 244−249. INSTICC, Portugal (2008)Google Scholar
  6. 6.
    Rizzi, M., D’Aloia, M., Castagnolo, B.: A Fully Automatic System for Detection of Breast Microcalcification Clusters. J. Med. Biol. Eng. 3, 181–188 (2010)Google Scholar
  7. 7.
    D’Aloia, M., Rizzi, M., Di Bari, P.A.: Second Opinion System for Microcalcification Diagnosis. World Appl. Sci. J. 23, 289–295 (2013)Google Scholar
  8. 8.
    Perednia, D.A., Gaines, J.A., Butruille, T.W.: Comparison of the Clinical Informativeness of Photographs and Digital Imaging Media with Multiple-Choice Receiver Operating Characteristic Analysis. Arch. Dermatol. 131, 292–297 (1995)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Mirzaalian, H., Lee, T.K., Hamarneh, G.: Skin Lesion Tracking Using Structured Graphical Models. Med. Image Anal., April 2015Google Scholar
  11. 11.
    Huang, H., Bergstresser, P.: A hybrid technique for dermatological image registration. In: 7th IEEE International Conference on Bioinformatics and Bioengineering, pp. 1163−1167. IEEE Press, Boston (2007)Google Scholar
  12. 12.
    Mirzaalian, H., Hamarneh, G., Lee, T.K.: A graph-based approach to skin mole matching incorporating template-normalized coordinates. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 2152−159. IEEE Press, Miami (2009)Google Scholar
  13. 13.
    Mirzaalian, H., Lee, T.K., Hamarneh, G.: Uncertainty-based feature learning for skin lesion matching using a high order MRF optimization framework. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 98–105. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Mirzaalian, H., Hamarneh, G., Lee, T.: Graph-based approach to skin mole matching incorporating template-normalized coordinates. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2152−2159. IEEE Press, Miami (2009)Google Scholar
  15. 15.
    Perednia, D.A., White, R.G.: Automatic registration of multiple skin lesions by use of point pattern matching. Comput. Med. Imaging Graph. 16, 205–216 (1992)CrossRefGoogle Scholar
  16. 16.
    Egmont-Petersen, M., de Ridder, D., Handels, H.: Image Processing with Neural Networks – A Review. Pattern Recogn. 35, 2279–2301 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Becerikli, Y., Demiray, H.E.: Alternative Neural Network Based Edge Detection. Neural Information Processing Letters and Reviews 10, 193–199 (2006)Google Scholar
  18. 18.
    Rizzi, M., D’Aloia, M., Guaragnella, C., Castagnolo, B.: Health Care Improvement: Comparative Analysis of Two CAD Systems in Mammographic Screening. IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 42, 1385–1395 (2012)CrossRefGoogle Scholar
  19. 19.
    Rizzi, M., D’Aloia, M., Castagnolo, B.: A Supervised Method for Microcalcification Cluster Diagnosis. Integr. Comput-Aid. E. 20, 157–167 (2013)Google Scholar
  20. 20.
    Rizzi, M., D’Aloia, M.: Computer Aided System for Breast Cancer Diagnosis. Biomed. Eng-App. Bas. C. 26, 14500331–14500338 (2014)CrossRefGoogle Scholar
  21. 21.
    Zheng, L., He, X.: Edge detection based on modified BP algorithm of ANN. In: Pan- Sydney Area Workshop on Visual Information Processing, pp. 119−122. Australian Computer Society Press, Sydney (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Politecnico di Bari - Dipartimento di Ingegneria Elettrica e dell’InformazioneBariItaly
  2. 2.MASVIS SRLConversanoItaly

Personalised recommendations