Advertisement

An Hippocampal Segmentation Tool Within an Open Cloud Infrastructure

  • Nicola AmorosoEmail author
  • Sabina Tangaro
  • Rosangela Errico
  • Elena Garuccio
  • Anna Monda
  • Francesco Sensi
  • Andrea Tateo
  • Roberto Bellotti
  • [Authorinst]for the Alzheimer’s Disease Neuroimaging Initiative
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

This study presents a fully automated algorithm for the segmentation of the hippocampus in structural Magnetic Resonance Imaging (MRI) and its deployment as a service on an open cloud infrastructure. Optimal atlases strategies for multi-atlas learning are combined with a voxel-wise classification approach. The method efficiency is optimized as training atlases are previously registered to a data driven template, accordingly for each test MRI scan only a registration is needed. The selected optimal atlases are used to train dedicated random forest classifiers whose labels are fused by majority voting. The method performances were tested on a set of 100 MRI scans provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Leave-one-out results (Dice = \(0.910\,\pm \,0.004\)) show the presented method compares well with other state-of-the-art techniques and a benchmark segmentation tool as FreeSurfer. The proposed strategy significantly improves a standard multi-atlas approach (\(p < .001\)).

Keywords

Segmentation Quantitative image analysis Imaging biomarkers Magnetic resonance imaging Machine learning 

References

  1. 1.
    Amoroso, N., Bellotti, R., Bruno, S., Chincarini, A., Logroscino, G., Tangaro, S., Tateo, A.: Automated Shape analysis landmarks detection for medical image processing. In: Proceedings of the International Symposium, CompIMAGE (2012)Google Scholar
  2. 2.
    Bellotti, R., Pascazio, S.: Editorial: Advanced physical methods in brain research. The European Physical Journal Plus 127(11), 145 (2012)CrossRefGoogle Scholar
  3. 3.
    Bland, J.M., Altman, D.G.: Comparing methods of measurement: why plotting difference against standard method is misleading. The Lancet 346(8982), 1085–1087 (1995)CrossRefGoogle Scholar
  4. 4.
    Boccardi, M., Bocchetta, M., Apostolova, L.G., Barnes, J., Bartzokis, G., Corbetta, G., DeCarli, C., Firbank, M., Ganzola, R., Gerritsen, L., et al.: Delphi definition of the EADC-ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance. Alzheimer’s & Dementia 11(2), 126–138 (2015)CrossRefGoogle Scholar
  5. 5.
    Boccardi, M., Bocchetta, M., Morency, F.C., Collins, D.L., Nishikawa, M., Ganzola, R., Grothe, M.J., Wolf, D., Redolfi, A., Pievani, M., et al.: Training labels for hippocampal segmentation based on the eadc-adni harmonized hippocampal protocol. Alzheimer’s & Dementia 11(2), 183–191 (2015)Google Scholar
  6. 6.
    Bron, E.E., Smits, M., van der Flier, W.M., Vrenken, H., Barkhof, F., Scheltens, P., Papma, J.M., Steketee, R.M.E., Orellana Méndez, C., Meijboom, R., Pinto, M., Meireles, J.R., Garrett, C., Bastos-Leite, A.J., Abdulkadir, A., Ronneberger, O., Amoroso, N., Bellotti, R., Cárdenas-Peña, D., Álvarez Meza, A.M., Dolph, C.V., Iftekharuddin, K.M., Eskildsen, S.F., Coupé, P., Fonov, V.S., Franke, K., Gaser, C., Ledig, C., Guerrero, R., Tong, T., Gray, K.R., Moradi, E., Tohka, J., Routier, A., Durrleman, S., Sarica, A., Di Fatta, G., Sensi, F., Chincarini, A., Smith, G.M., Stoyanov, Z.V., Sørensen, L., Nielsen, M., Tangaro, S., Inglese, P., Wachinger, C., Reuter, M., van Swieten, J.C., Niessen, W.J., Klein, S.: Standardized evaluation of methods for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage (in press)Google Scholar
  7. 7.
    Chincarini, A., Bosco, P., Gemme, G., Esposito, M., Rei, L., Squarcia, S., Bellotti, R., Minthon, L., Frisoni, G., Scheltens, P., et al.: Automatic temporal lobe atrophy assessment in prodromal ad: Data from the descripa study. Alzheimer & Dementia 1, 12 (2013)Google Scholar
  8. 8.
    Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  9. 9.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. NeuroImage 62(2), 782–790 (2012)CrossRefGoogle Scholar
  10. 10.
    Kim, M., Wu, G., Li, W., Wang, L., Son, Y.D., Cho, Z.H., Shen, D.: Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models. NeuroImage 83, 335–345 (2013)CrossRefGoogle Scholar
  11. 11.
    Lotjonen, J.M.P., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49(3), 2352–2365 (2010)CrossRefGoogle Scholar
  12. 12.
    Tangaro, S., Amoroso, N., Boccardi, M., Bruno, S., Chincarini, A., Ferraro, G., Frisoni, G., Maglietta, R., Redolfi, A., Rei, L., Bellotti, R.: Automated voxel-by-voxel tissue classification for hippocampal segmentation: Methods and validation. Physica Medica 30(8), 878–887 (2014)CrossRefGoogle Scholar
  13. 13.
    Tangaro, S., Amoroso, N., Brescia, M., Cavuoti, S., Chincarini, A., Errico, R., Inglese, P., Longo, G., Maglietta, R., Tateo, A., Riccio, G., Bellotti, R.: Feature Selection Based on Machine Learning in MRIs for Hippocampal Segmentation. Computational and Mathematical Methods in Medicine, Article ID(814104) (in press)Google Scholar
  14. 14.
    Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4itk: improved n3 bias correction. IEEE Transactions on Medical Imaging 29(6), 1310–1320 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicola Amoroso
    • 1
    • 2
    Email author
  • Sabina Tangaro
    • 1
  • Rosangela Errico
    • 2
    • 3
  • Elena Garuccio
    • 4
  • Anna Monda
    • 2
  • Francesco Sensi
    • 3
  • Andrea Tateo
    • 2
  • Roberto Bellotti
    • 1
    • 2
  • [Authorinst]for the Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Istituto Nazionale di Fisica Nucleare, Sezione di BariBariItaly
  2. 2.Dipartimento Interateneo di FisicaUniversità Degli Studi di BariBariItaly
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di GenovaGenovaItaly
  4. 4.Dipartimento di FisicaUniversità Degli Studi di SienaSienaItaly

Personalised recommendations